Skip to main content
Log in

Magnetron Deposition of Oxide Films in the Metallic Mode Enhanced by Radio-Frequency Inductively Coupled Plasma Source

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Magnetron sputtering of an yttrium target in a reactive atmosphere of Ar + O2 enhanced by a radio-frequency inductively coupled plasma source was studied. Four different schemes for yttrium target sputtering were examined to define the possibility to use the metallic deposition mode for a coating consisting of the yttrium oxide phase. The effective pumping speeds were calculated for all experimental schemes. The increase in the effective pumping speed from 0.24 to ~0.87 m3/s when using dual magnetron sputtering of Y and Cu targets was shown to result in the shift of the hysteresis loop towards higher O2 flow rates. This leads to the use of both transition and metallic modes of Y target sputtering in the Ar + O2 atmosphere. The oxide coating was deposited by dual magnetron sputtering of yttrium and copper targets in the metallic mode, enhanced by a radio-frequency inductively coupled plasma source. The coating consisted of Cu2O and Y2O3 phases. The calculation of Cu and Y sputtering yields was done to confirm the metallic mode of coating deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. Zhu, Y. Zhu, W. Shen, Y. Wang, J. Han, G. Tian, and B. Dai, Thin Solid Films 519, 4894 (2011). https://doi.org/10.1016/j.tsf.2011.01.049

    Article  CAS  Google Scholar 

  2. E. Courcot, F. Rebillat, F. Teyssandierm, and C. Louchet-Pouillerie, J. Eur. Ceram. Soc. 30, 1911 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.02.012

    Article  CAS  Google Scholar 

  3. P. Lei, J. Zhu, Y. Zhu, C. Jiangm, and X. Yin, Appl. Phys. A 108, 621 (2012). https://doi.org/10.1007/s00339-012-6940-4

    Article  CAS  Google Scholar 

  4. M. Goral, S. Kotowski, A. Nowotnik, M. Pytel, M. Drajewiczm, and J. Sieniawski, Surf. Coat. Technol. 237, 5 (2013). https://doi.org/10.1016/j.surfcoat.2013.09.028

    Article  CAS  Google Scholar 

  5. A. Pakseresht, F. Sharifianjazi, A. Esmaeilkhanian, L. Bazli, M. R. Nafchi, M. Bazlim, and K. Kirubaharan, Mater. Des. 222, 111044 (2022). https://doi.org/10.1016/j.matdes.2022.111044

    Article  CAS  Google Scholar 

  6. D. Depla and S. Mahieu, Reactive Sputter Deposition, 1st ed. (Springer, Berlin, 2008).

    Book  Google Scholar 

  7. P. Lei, W. Leroy, B. Dai, J. Zhu, X. Chen, J. Hanm, and D. Depla, Surf. Coat. Technol. 276, 39 (2015). https://doi.org/10.1016/j.surfcoat.2015.06.052

    Article  CAS  Google Scholar 

  8. D. V. Sidelev, E. D. Voroninam, and V. A. Grudinin, Vacuum 207, 111551 (2023). https://doi.org/10.1016/j.vacuum.2022.111551

    Article  CAS  Google Scholar 

  9. D. V. Sidelev, E. D. Voroninam, and G. A. Bleykher, Vacuum 211, 111956 (2023). https://doi.org/10.1016/j.vacuum.2023.111956

    Article  CAS  Google Scholar 

  10. E. V. Berlin and V. J. Grigoryev, US Patent No. 9704691 (11 July 2017).

  11. D. R. Lide and G. Baysinger, Handbook of Chemistry and Physics, 92nd ed. (CRC, Boca Raton, 2011).

    Google Scholar 

  12. J. E. Burke, Progress in Ceramic Science (Elsevier, Amsterdam, 2013).

    Google Scholar 

  13. K. Strijckmans, R. Schelfhout, and D. Depla, J. Appl. Phys. 124, 241101 (2018). https://doi.org/10.1063/1.5042084

    Article  CAS  Google Scholar 

  14. R. Schelfhout, K. Strijckmans, and D. Depla, Surf. Coat. Technol. 399, 126097 (2020). https://doi.org/10.1016/j.surfcoat.2020.126097

    Article  CAS  Google Scholar 

  15. R. Behrisch, Sputtering by Particle Bombardment (Springer, New York, 1981).

    Book  Google Scholar 

  16. L. N. Rozanov, Meas. Sci. Technol. 13, 1654 (2002). https://doi.org/10.1088/0957-0233/13/10/708

    Article  Google Scholar 

  17. J. Ziegler, J. P. Biersack, and M. D. Ziegler, TRIM (the Transport of Ions in Matter). http://www.srim.org.

  18. M. Saraiva, V. Georgieva, S. Mahieu, K. Van Aeken, A. Bogaerts, and D. Depla, J. Appl. Phys. 107, 034902 (2010). https://doi.org/10.1063/1.3284949

    Article  CAS  Google Scholar 

  19. K. Strijckmans, W. P. Leroy, R. De Gryse, and D. Depla, Surf. Coat. Technol. 206, 3666 (2012). https://doi.org/10.1016/j.surfcoat.2012.03.019

    Article  CAS  Google Scholar 

  20. Y. Mao, J. Engels, A. Houben, M. Rasinski, J. Steffens, A. Terra, and J. W. Coenen, Nucl. Mater. Energy 10, 1 (2017). https://doi.org/10.1016/j.nme.2016.12.031

    Article  Google Scholar 

Download references

FUNDING

This work was supported by the Russian Science Foundation (grant no. 22-29-01173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Sidelev.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidelev, D.V., Voronina, E.D. Magnetron Deposition of Oxide Films in the Metallic Mode Enhanced by Radio-Frequency Inductively Coupled Plasma Source. J. Surf. Investig. 17, 1143–1147 (2023). https://doi.org/10.1134/S1027451023050166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023050166

Keywords:

Navigation