Skip to main content
Log in

Kinetics of Hydrogen Evolution during Ammonia Borane Hydrolysis with Cobalt-Based Catalysts

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

We investigate the kinetics of hydrogen evolution during the hydrolysis reaction of aqueous solutions of ammonia borane with cobalt-based catalysts deposited onto various substrates (Co3O4/ZnO, Co/ZnO, Co3O4/zeolite, and Co/zeolite) and in the form of Co(OH)2 powder. In each case, we determine the reaction order, rate constants, the apparent activation energy of the reaction, and the rate of hydrogen evolution during hydrolysis in the temperature range of 35–80°С. A solution of ammonia borane with a concentration of 0.078 M is used in all cases. The amount of the active part of the catalysts is determined by the chemical method; it is 7.5–10% of the total catalyst weight. For the low-temperature Co–B catalyst and Co(OH)2, the kinetic dependences correspond to the zero or close-to-zero order of the reaction. The Co3O4/ZnO, Co/ZnO, Co3O4/zeolite, and Co/zeolite catalysts ensure the first order of the reaction. The maximum rate of hydrogen evolution at 80°С is 3125 mL H2 (g cat)–1 min–1 for Co/ZnO (turnover frequency is TOF = 8.2 min–1) and 3750 mL H2 (g cat)–1 min–1 (TOF = 11.7 min–1), respectively. The apparent activation energy of the reaction of the catalytic hydrolysis of ammonia borane is calculated as 26.0 kJ/mol for Co3O4/ZnO, 44.8 kJ/mol for Co–B, 43.4 kJ/mol for black Co(OH)2, and 47.4 kJ/mol for blue Co(OH)2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. Akbayrak and S. Ozkar, Int. J. Hydrogen Energy 43, 18592 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.190

    Article  CAS  Google Scholar 

  2. U. B. Demirci, Int. J. Hydrogen Energy 42, 9978 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.154

    Article  CAS  Google Scholar 

  3. A. K. Figen, M. B. Piskin, B. Coskuner, and V. Imamoglu, Int. J. Hydrogen Energy 38, 16215 (2013). https://doi.org/10.1016/j.ijhydene.2013.10.033

    Article  CAS  Google Scholar 

  4. I. Sreedhar, K. M. Kamani, B. M. Kamani, B. M. Reddy, and A. Venugopal, Renewable Sustainable Energy Rev. 91, 838 (2018). https://doi.org/10.1016/j.rser.2018.04.028

    Article  CAS  Google Scholar 

  5. V. I. Simagina, N. V. Vernikovskaya, O. V. Komova, N. L. Kayl, O. V. Netskina, and G. V. Odegova, Chem. Eng. J. 329, 156 (2017). https://doi.org/10.1016/j.cej.2017.05.005

    Article  CAS  Google Scholar 

  6. M. Liu, L. Zhou, X. Luo, C. Wan, and L. Xu, Catalysts 10, 788 (2020). https://doi.org/10.3390/catal10070788

    Article  CAS  Google Scholar 

  7. H. Wu, Y. Cheng, Y. Fan, X. Lu, L. Li, B. Liu, B. Li, and S. Lu, Int. J. Hydrogen Energy 45, 30325 (2020). https://doi.org/10.1016/j.ijhydene.2020.08.131

    Article  CAS  Google Scholar 

  8. C. Y. Alpaydin, S. K. Gulbay, and C. O. Colpan, Int. J. Hydrogen Energy 45, 3414 (2020). https://doi.org/10.1016/j.ijhydene.2019.02.181

    Article  CAS  Google Scholar 

  9. U. B. Demirci and P. Miele, Phys. Chem. Chem. Phys. 16, 6872 (2014). https://doi.org/10.1039/c4cp00250d

    Article  CAS  Google Scholar 

  10. N. Patel and A. Miotello, Int. J. Hydrogen Energy 40, 1429 (2015). https://doi.org/10.1016/j.ijhydene.2014.11.052

    Article  CAS  Google Scholar 

  11. D. Lu, J. Liao, S. Zhong, Y. Leng, S. Ji, H. Wang, R. Wang, and H. Li, Int. J. Hydrogen Energy 43, 5541 (2018). https://doi.org/10.1016/j.ijhydene.2018.01.129

    Article  CAS  Google Scholar 

  12. A. M. Gorlova, N. L. Kayl, O. V. Komova, O. V. Netskina, A. M. Ozerova, G. V. Odegova, O. A. Bulavchenko, A. V. Ishchenko, and V. I. Simagina, Renewable Energy 121, 722 (2018). https://doi.org/10.1016/j.renene.2018.01.089

    Article  CAS  Google Scholar 

  13. B. N. Kinsiz, B. C. Filiz, S. K. Depren, and A. K. Figen, Appl. Mater. Today 22, 100952 (2021). https://doi.org/10.1016/j.apmt.2021.100952

    Article  Google Scholar 

  14. N. V. Lapin and N. Ya. D’yankova, Inorg. Mater. 49, 975 (2013). https://doi.org/10.1134/S0020168513100063

    Article  CAS  Google Scholar 

  15. E. Onat, O. Sahin, M. S. Izgi, and S. Horoz, J. Mater. Sci.: Mater. Electron. 32, 27251 (2021). https://doi.org/10.1007/s10854-021-07094-9

    Article  CAS  Google Scholar 

  16. S. H. Xu, J. F. Wang, A. Valerio, W. Y. Zhang, J. L. Sun, and D. N. He, Inorg. Chem. Front. 8, 48 (2021). https://doi.org/10.1039/d0qi00659a

    Article  CAS  Google Scholar 

  17. H. Zhang, X. J. Gu, and J. Song, Int. J. Hydrogen Energy 45, 21273 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.178

    Article  CAS  Google Scholar 

  18. G. Yang, S. Y. Guan, S. Mehdi, Y. P. Fan, B. Z. Liu, and B. J. Li, Green Energy Environ. 6, 236 (2021). https://doi.org/10.1016/j.gee.2020.03.012

    Article  CAS  Google Scholar 

  19. R. Herron, C. Marchant, and J. A. Sullivan, Catal. Commun. 107, 14 (2018). https://doi.org/10.1016/j.catcom.2018.01.008

    Article  CAS  Google Scholar 

  20. W. J. Wang, M. W. Liang, Y. Jiang, C. Y. Liao, Q. Long, X. F. Lai, and L. Liao, Mater. Lett. 293, 129702 (2021). https://doi.org/10.1016/j.matlet.2021.129702

    Article  CAS  Google Scholar 

  21. M. H. Fang, S. Y. Wu, Y. H. Chang, M. Narwane, B. H. Chen, W. L. Liu, D. Kurniawan, W. H. Chiang, C. H. Lin, Y. C. Chuang, I. J. Hsu, H. T. Chen, and T. T. Lu, ACS Appl. Mater. Interfaces 13, 47465 (2021). https://doi.org/10.1021/acsami.1c11521

    Article  CAS  Google Scholar 

  22. J. Zhang, Y. Duan, Y. Zhu, Y. Wang, H. Yao, and G. Mi, Mater. Chem. Phys. 201, 297 (2017). https://doi.org/10.1016/j.matchemphys.2017.08.040

    Article  CAS  Google Scholar 

  23. Y. Wang, W. Meng, D. Wang, G. Li, S. Wu, Z. Cao, K. Zhang, C. Wu, and S. Liu, Int. J. Hydrogen Energy 42, 30718 (2017). https://doi.org/10.1016/j.ijhydene.2017.10.131

    Article  CAS  Google Scholar 

  24. R. Jiang, W. Z. Wang, X. Zheng, Q. A. Li, Z. M. Xu, and J. Peng, Int. J. Hydrogen Energy 46, 5345 (2021). https://doi.org/10.1016/j.ijhydene.2020.11.086

    Article  CAS  Google Scholar 

  25. H. Wu, Y. J. Cheng, B. Y. Wang, Y. Wang, M. Wu, W. D. Li, B. Z. Liu, and S. Y. Lu, J. Energy Chem. 57, 198 (2021). https://doi.org/10.1016/j.jechem.2020.08.051

    Article  CAS  Google Scholar 

  26. C. Wang, Z. L. Wang, H. L. Wang, Y. Chi, M. G. Wang, D. W. Cheng, J. J. Zhang, C. Wu, and Z. K. Zhao, Int. J. Hydrogen Energy 46, 9030 (2021). https://doi.org/10.1016/j.ijhydene.2021.01.026

    Article  CAS  Google Scholar 

  27. J. Chen, B. Long, H. B. Hu, Z. Q. Zhong, I. Lawa, F. Zhang, L. W. Wang, and Z. H. Yuan, Int. J. Hydrogen Energy 47, 2976 (2022). https://doi.org/10.1016/j.ijhydene.2021.10.255

    Article  CAS  Google Scholar 

  28. H. B. Hu, B. Long, Y. F. Jiang, S. C. Sun, I. Lawan, W. M. Zhou, M. X. Zhang, L. W. Wang, F. Zhang, and Z. H. Yuan, Chem. Res. Chin. Univ. 36, 1209 (2020). https://doi.org/10.1007/s40242-020-0209-9

    Article  CAS  Google Scholar 

  29. A. M. Ozerova, O. A. Bulavchenko, O. V. Komova, O. V. Netskina, V. I. Zaikovskii, G. V. Odegova, and V. I. Simagina, Kinet. Catal. 53, 511 (2012). https://doi.org/10.1134/S0023158412040088

    Article  CAS  Google Scholar 

  30. O. V. Netskina, A. M. Ozerova, O. V. Komova, D. I. Kochubey, V. V. Kanazhevskiy, A. V. Ishchenko, and V. I. Simagina, Top. Catal. 59, 1431 (2016). https://doi.org/10.1007/s11244-016-0664-1

    Article  CAS  Google Scholar 

  31. V. I. Simagina, A. M. Ozerova, O. V. Komova, and O. V. Netskina, Catalysts 11, 268 (2021). https://doi.org/10.3390/catal11020268

    Article  CAS  Google Scholar 

  32. Yu. V. Karyakin and I. I. Angelov, Pure Cahemical Substances (Khimiya, Moscow, 1974) [in Russian].

    Google Scholar 

Download references

Funding

The work are made to state task № 075-01304-23-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Grinko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyankova, N.Y., Lapin, N.V., Grinko, V.V. et al. Kinetics of Hydrogen Evolution during Ammonia Borane Hydrolysis with Cobalt-Based Catalysts. J. Surf. Investig. 17, 1001–1008 (2023). https://doi.org/10.1134/S102745102305004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102305004X

Keywords:

Navigation