Skip to main content
Log in

Modification of the Surface of Lead-Tin Telluride Films by Low-Energy Argon Ions

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The processes of surface modification of epitaxial films of lead-tin telluride Pb1 – xSnxTe (х = 0.0–1.0) during ion-plasma treatment in argon plasma at an ion energy of ~25 eV are studied. Films 1–2 µm thick are grown by molecular-beam epitaxy on (111) BaF2 substrates. The treatment is carried out in the dense argon-plasma reactor of a low-pressure RF inductive discharge. It is found that the sputtering rate of Pb1 – xSnxTe decreases as the Sn content in the film increases. It is shown using scanning electron microscopy that nanostructures of various shapes are formed on their surface during sample processing. The size and shape of the nanostructures depend on the tin content in the film and on the plasma-treatment time t (60–240 s). At х = 0.0 and 0.2, hemispherical formations appear on the surface of the sample, the sizes of which increase with treatment time. At t > 120 s, two groups of quasi-spherical particles, differing in size, are formed on the surface. Large particles with a size of 250–500 nm are hollow and, in terms of chemical composition, consisted mainly of lead. When treating films with a high tin content (x = 0.8), an ensemble of vertical nanorods grow on their surface according to the “vapor–liquid–crystal” mechanism up to 30 nm in height with spherical “caps” 20–30 nm in diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. G. Nimtz and B. Schlicht, Narrow-Gap Semiconductors, Springer Tracts Modern Physics (Springer, Berlin, 1983), Vol. 98, p. 1. https://doi.org/10.1007/BFb0044920

  2. S. Yoneda, M. Kato, and I. J. Ohsugi, J. Theor. Appl. Phys. 7, 11 (2013). https://doi.org/10.1186/2251-7235-7-11

    Article  Google Scholar 

  3. E. Xu, Z. Li, J. A. Acosta, N. Li, B. Swartzentruber, S. Zheng, N. Sinitsyn, H. Htoon, J. Wang, and S. Zhang, Nano Res. 9, 820 (2016). https://doi.org/10.1007/s12274-015-0961-1

    Article  CAS  Google Scholar 

  4. A. Ishida, K. Naruse, S. Nakashima, Y. Takano, S. Du, and K. Hirakawa, Appl. Phys. Lett. 113, 72103 (2018). https://doi.org/10.1063/1.5042764

    Article  CAS  Google Scholar 

  5. R. Buczko and L. Cywinski, Phys. Rev. B 85, 205319 (2012). https://doi.org/10.1103/PhysRevB.85.205319

    Article  CAS  Google Scholar 

  6. S.-Y. Xu, C. Liu, N. Alidoust, M. Neupane, D. Qian, I. Belopolski, J. D. Denlinger, Y. J. Wang, H. Lin, L. A. Wray, G. Landolt, B. Slomski, J. H. Dil, A. Marcinkova, E. Morosan, Q. Gibson, R. Sankar, F. C. Chou, R. J. Cava, A. Bansil, and M. Z. Hasan, Nat. Commun. 3, 1192 (2012). https://doi.org/10.1038/ncomms2191

    Article  CAS  Google Scholar 

  7. N. Wang, D. West, J. Liu, J. Li, Q. Yan, Gu. Bing-Lin, S. B. Zhang, and W. Duan, Phys. Rev. Lett. 89, 045142 (2014). https://doi.org/10.1103/PhysRevB.89.045142

    Article  CAS  Google Scholar 

  8. G. Krizman, B. A. Assaf, G. Bauer, G. Springholz, L. A. de Vaulchier, and Y. Guldner, Phys. Rev. Lett. 103, 235302 (2021). https://doi.org/10.1103/PhysRevB.103.235302

    Article  CAS  Google Scholar 

  9. P. Liu, H. J. Han, J. Wei, D. Hynek, J. Hart, M. Han, C. Trimble, J. Williams, Y. Zhu, and J. Cha, ACS Appl. Electron. Mater. 3, 184 (2021). https://doi.org/10.1021/acsaelm.0c00740

    Article  CAS  Google Scholar 

  10. J. Sadowski, P. Dziawa, A. Kaleta, B. Kurowska, A. Reszka, T. Story, and S. Kret, Nano. Res. Lett. 10, 20772 (2018). https://doi.org/10.1039/c8nr06096g

    Article  CAS  Google Scholar 

  11. M. Saghir, A. M. Sanchez, S. A. Hindmarsh, S. J. York, and G. Balakrishnan, Cryst. Growth Des. 15, 5202 (2015). https://doi.org/10.1021/acs.cgd.5b00577

    Article  CAS  Google Scholar 

  12. S. P. Zimin, E. S. Gorlachev, and I. I. Amirov, Encyclopedia of Plasma Technology, Ed. by J. L. Shohet (CRC, Boca Raton, 2017). https://doi.org/10.1081/E-EPLT-120053966

  13. K. A. Tolpin, V. I. Bachurin, and V. E. Yurasova, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5, 1118 (2011). https://doi.org/10.1134/S1027451011110206

    Article  CAS  Google Scholar 

  14. D. M. Zayachuk, Y. D. Zayachuk, Cs. Buga, V. E. Slynko, and A. Csik, Vacuum 186, 110058 (2021). https://doi.org/10.1016/j.vacuum.2021.110058

    Article  CAS  Google Scholar 

  15. S. P. Zimin, E. S. Gorlachev, I. I. Amirov, V. V. Naumov, R. Juskenas, M. Skapas, E. Abramof, and P. H. O. Rappl, Semicond. Sci. Technol. 34, 095001 (2019). https://doi.org/10.1088/1361-6641/ab2e9b

    Article  CAS  Google Scholar 

  16. S. P. Zimin, I. I. Amirov, V. V. Naumov, and K. E. Guseva, Tech. Phys. Lett. 44, 518 (2018). https://doi.org/10.1134/S1063785018060305

    Article  CAS  Google Scholar 

  17. S. P. Zimin, I. I. Amirov, V. V. Naumov, and K. E. Guseva, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 14, 1174 (2020). https://doi.org/10.1134/S1027451020050213

    Article  CAS  Google Scholar 

  18. P. H. O. Rappl, H. Closs, S. O. Ferreira, E. Abramof, C. Boschetti, P. Motisuke, A. Y. Ueta, and I. N. Bandeira, Cryst. Growth 191, 466 (1998). https://doi.org/10.1016/S0022-0248(98)00135-3

    Article  CAS  Google Scholar 

  19. J. Bohdansky, J. Roth, and H. L. Bay, J. Appl. Phys. 51, 2861 (1980). https://doi.org/10.1063/1.327954

    Article  CAS  Google Scholar 

  20. N. N. Berchenko, A. Yu. Nikiforov, and S. V. Fadeyev, Surf. Interface Anal. 38, 518 (2006). https://doi.org/10.1002/sia.2308

    Article  CAS  Google Scholar 

  21. A. S. Tarasov, D. V. Ishchenko, A. N. Akimov, I. O. Akhundov, V. A. Golyashov, A. E. Klimov, N. S. Pashchin, S. P. Suprun, E. V. Fedosenko, V. N. Sherstyakova, and O. E. Tereshchenko, Tech. Phys. 64, 1704 (2019). https://doi.org/10.1134/S1063784219110264

    Article  CAS  Google Scholar 

  22. M. Safdar, Q. Wang, Z. Wang, X. Zhan, K. Xu, F. Wang, M. Mirza, and J. He, Nano Lett. 15, 2485 (2015). https://doi.org/10.1021/nl504976g

    Article  CAS  Google Scholar 

  23. Z. Li, S. Shao, N. Li, K. McCall, J. Wang, and S. X. Zhang, Nano Lett. 13, 5443 (2013). https://doi.org/10.1021/nl4030193

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

SEM studies were carried out at the Collective Use Center “Diagnostics of microstructures and nanostructures” and supported by the Ministry of Higher Education and Science of the Russian Federation.

Funding

This work supported by the Ministry of Higher Education and Science of the Russian Federation was performed in the framework of the state task of the Yaroslavl Branch of K. A. Valiev Institute of Physics and Technology, Russian Academy of Sciences (theme no. FFNN-2022-0017) and in the framework of the initiative research at Yaroslavl State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. P. Zimin or I. I. Amirov.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimin, S.P., Amirov, I.I., Naumov, V.V. et al. Modification of the Surface of Lead-Tin Telluride Films by Low-Energy Argon Ions. J. Surf. Investig. 16, 876–883 (2022). https://doi.org/10.1134/S1027451022050421

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022050421

Keywords:

Navigation