Skip to main content
Log in

Surface Modification of Pb1 – xSnxSe Films during Plasma Treatment Near the Sputtering Threshold

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The processes of the plasma sputtering of epitaxial lead-tin selenide films near the sputtering threshold are studied. Pb– xSnxSe films (x = 0.03, 0.07) with a thickness of 0.5–2 microns are grown by molecular-beam epitaxy on CaF2/Si(111) substrates. The films are plasma treated with radio-frequency high-density low-pressure inductively coupled argon plasma with an ion energy of 20–25 eV at typical process times of 60–360 s. As a result of plasma treatment for a prolonged period, the formation of hollow metal particles of nano- and submicron sizes is observed on the surface. Using scanning electron microscopy methods, it is shown that the lateral dimensions of the obtained structures, their shape and surface density vary over wide ranges and significantly depend on the time of plasma sputtering. The features of plasma sputtering for the studied films and films of a binary compound of lead selenide are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. F. W. Wise, Acc. Chem. Res., No. 33, 773 (2000). https://doi.org/10.1021/ar970220q

  2. S. P. Zimin and E. S. Gorlachev, Nanostructured Lead Chalcogenides (Yarosl. Gos. Univ., Yaroslavl, 2011) [in Russian].

    Google Scholar 

  3. K. Ostrikov, J. Phys. D: Appl. Phys. 47, 224009 (2014). https://doi.org/10.1088/0022-3727/47/22/224009

    Article  CAS  Google Scholar 

  4. S. P. Zimin, E. S. Gorlachev, and I. I. Amirov, in Encyclopedia of Plasma Technology, Ed. by J. L. Shohet (CRC, New York, 2017), Vol. 1, p. 679. https://doi.org/10.1081/E-EPLT-120053966

    Book  Google Scholar 

  5. S. Gupta, D. C. Agarwal, S. A. Khan, et al., Mater. Sci. Eng., B 184, 58 (2014). https://doi.org/10.1016/j.mseb.2014.01.002

    Article  CAS  Google Scholar 

  6. K. A. Tolpin, V. I. Bachurin, and V. E. Yurasova, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5, 1118 (2011).

    Article  CAS  Google Scholar 

  7. S. P. Zimin, E. S. Gorlachev, I. I. Amirov, and V. V. Naumov, Tech Phys. Lett. 37, 929 (2011).

    Article  CAS  Google Scholar 

  8. I. I. Amirov, S. P. Zimin, E. S. Gorlachev, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 643 (2012).

    Article  CAS  Google Scholar 

  9. S. P. Zimin, I. I. Amirov, E. S. Gorlachev, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10, 623 (2016). https://doi.org/10.1134/S102745101603037X

    Article  CAS  Google Scholar 

  10. N. Choudhury, F. Singh, and B. K. Sarma, Indian J. Pure Appl. Phys. 50, 325 (2012).

    CAS  Google Scholar 

  11. D. M. Zayachuk, V. E. Slynko, and A. Csik, Phys. Shem. Solid State 3 (1), 336 (2016). https://doi.org/10.15330/pcss.17.3.336-341

    Article  CAS  Google Scholar 

  12. D. M. Zayachuk, V. E. Slynko, and A. Csik, Phys. Chem. Solid. State 18 (1), 21 (2017). https://doi.org/10.15330/pcss.18.1.21-28

    Article  Google Scholar 

  13. S. P. Zimin, I. I. Amirov, V. V. Naumov, et al., Tech. Phys. Lett. 44, 518 (2018). https://doi.org/10.1134/S1063785018060305

    Article  CAS  Google Scholar 

  14. H. Zogg, M. Arnold, F. Felder, et al., J. Electron. Mater. 37 (9), 1479 (2008). https://doi.org/10.1007/s11664-008-0429-0

    Article  CAS  Google Scholar 

  15. J. Bohdansky, J. Appl. Phys. 51 (5), 2861 (1980). https://doi.org/10.1063/1.327954

    Article  CAS  Google Scholar 

  16. H. Zogg, C. Maissen, S. Blunier, et al., Semicond. Sci. Technol. 8 (1S), 337 (1993). https://doi.org/10.1088/0268-1242/8/1S/075

    Article  Google Scholar 

Download references

FUNDING

The work was carried out as part of the state task of Valiev Nuclear Physics Institute, Russian Academy of Sciences, project no. 0066-2019-0002 and in the framework of the initiative research of Yaroslavl State University AAAA-A16-116070610023-3. The SEM studies were carried out at the Center for Collective Usage “Diagnostic Microstructures and Nanostructures”, with financial support from the Ministry of Education and Science of the Russian Federation. We are grateful to Hans Zogg, ETH, Zurich for the provided Pb1 – xSnxSe/CaF2/Si(111) film samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. P. Zimin or I. I. Amirov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimin, S.P., Amirov, I.I., Naumov, V.V. et al. Surface Modification of Pb1 – xSnxSe Films during Plasma Treatment Near the Sputtering Threshold. J. Surf. Investig. 14, 1174–1178 (2020). https://doi.org/10.1134/S1027451020050213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020050213

Keywords:

Navigation