Skip to main content
Log in

Abstract

A number of mechanisms of the diffusion of arsenic atoms including the radiation- stimulated vacancy, interstitial, and mixed (Frank—Turnbull mechanism) types are considered to explain the earlier discovered ion-stimulated transformation of a layer of native GaAs oxide into a layer of Ga2O3 at room temperature. An estimate of the diffusion coefficients and lengths makes it possible to conclude that the interstitial diffusion mechanism dominates at a fluence Q < 1015 cm–2. It is found that at room temperature, when the interstitial mechanism is implemented, the diffusion coefficient (DAs ~ 1.3 × 10–16 cm2/s) and the diffusion length (L > 9 nm) are sufficient to remove elemental arsenic formed under the action of argon ions from a layer of native oxide with a thickness of 2.0–2.5 nm in 10 minutes. However, the contribution of the vacancy mechanism increases with increasing irradiation dose due to an increase in the concentration of vacancies. In this case, the diffusion mechanism becomes mixed. At a fluence of Q > 1015 cm–2, the vacancy mechanism provides a diffusion coefficient (DAs ~ 0.7 × 10–17 cm2/s) and diffusion length (L > 2.5 nm) also sufficient to remove elemental arsenic from the oxide layer within 10–20 min. It is shown that the diffusion of arsenic can be significant in the processes of chemical modification of GaAs oxides even at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, M. A. Mastro, Appl. Phys. Rev. 5, 011301 (2018). https://doi.org/10.1063/1.5006941

    Article  CAS  Google Scholar 

  2. A. G. Baca and C. I. H. Ashby, Fabrication of GaAs Devices (IET, London, 2005). https://doi.org/1049/PBEP006E

    Book  Google Scholar 

  3. G. P. Schwartz, G. J. Gualtieri, G. W. Kammlott, and B. Schwartz, J. Electrochem. Soc. 126, 1737 (1979). https://doi.org/10.1149/1.2128789

    Article  CAS  Google Scholar 

  4. J. P. Contour, J. Massies, and A. Saletes, Jpn. J. Appl. Phys. 24, L563 (1985). https://doi.org/10.1143/JJAP.27.L167

    Article  Google Scholar 

  5. T. Ishikawa and H. Ikoma, Jpn. J. Appl. Phys. 31, 3981 (1992).

    Article  CAS  Google Scholar 

  6. G. Hollinger, R. Skheyta-Kabbani, and M. Gendry, Phys. Rev. B 49, 11159 (1994). https://doi.org/10.1103/physrevb.49.11159

    Article  CAS  Google Scholar 

  7. C. C. Surdu-Bob, S. O. Saied, and J. L. Sullivan, Appl. Surf. Sci. 183, 126 (2001). https://doi.org/10.1016/S0169-4332(01)00583-9

    Article  CAS  Google Scholar 

  8. M. R. Vilar, J. E. Beghdadi, F. Debontridder, R. Artzi, R. Naaman, A. M. Ferraria, and A. M. Botelho do Rego, Surf. Interface Anal. 37, 673 (2005). https://doi.org/10.1002/SIA.2062

    Article  Google Scholar 

  9. L. Feng, L. Zhang, H. Liu, X. Gao, Zh. Miao, L. Wang, S. Niu, and C. Cheng, Proc. SPIE 8912, 89120 (2013). https://doi.org/10.1117/12.2033679

    Article  CAS  Google Scholar 

  10. V. M. Mikoushkin, V. V. Bryzgalov, E. A. Makarevskaya, et al., Semiconductors 52, 2057 (2018). https://doi.org/10.1016/j.surfcoat.2018.03.004

    Article  CAS  Google Scholar 

  11. V. M. Mikoushkin, A. P. Solonitsyna, E. A. Makarevskaya, and D. A. Novikov, Semiconductors 53, 1918 (2019). https://doi.org/10.1134/S1063782619140124

    Article  CAS  Google Scholar 

  12. V. M. Mikoushkin, V. V. Brysgalov, E. A. Makarevskaya, A. P. Solonitsyna, and D. E. Marchenko, Surf. Coat. Technol. 344, 149 (2018). https://doi.org/10.1016/j.surcoat10.1016.2018.03.004

    Article  CAS  Google Scholar 

  13. S. I. Fedoseenko, D. V. Vyalikh, I. E. Iossifov, R. Follath, S. A. Gorovikov, R. Puttner, J. S. Schmidt, S. L. Molodtsov, V. K. Adamchuk, W. Gudat, and G. Kaindl, Nucl. Instrum. Methods Phys. Res., Sect. A 505, 718 (2003). https://doi.org/10.1007/s00339-008-4916-1

    Article  CAS  Google Scholar 

  14. D. Briggs and M. P. Seah, Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy (Wiley, New York, 1983).

    Google Scholar 

  15. H. Mehrer, Diffusion in Solids (Springer, Berlin, 2007). https://doi.org/10.1007/978-3-540-71488-0

  16. D. Shaw, Atomic Diffusion in Semiconductors (Plenum, London, 1973). https://doi.org/10.1007/978-1-4615-8636-4

  17. J. F. Ziegler and J. M. Manoyan, Nucl. Instum. Methods 35, 215 (1988). https://doi.org/10.1016/0168-583X(88)90273-X

    Article  Google Scholar 

  18. A. Rim and R. Beserman, J. App. Phys 74, 897 (1993). https://doi.org/10.1063/1.354884

    Article  CAS  Google Scholar 

  19. J. F. Wager, J. Appl. Phys. 69, 3022 (1991). https://doi.org/10.1063/1.348589

    Article  CAS  Google Scholar 

  20. J. P. Stark, Solid State Diffusion (Krieger, Malabar, FL, 1983).

    Google Scholar 

  21. A. Heiden, M. Bornhöfft, J. Mayer, and M. Martin, Phys. Chem. Chem. Phys. 21, 4268 (2019). https://doi.org/10.1039/c8cp06439c

    Article  CAS  Google Scholar 

  22. A. V. Bobyl, S. G. Konnikov, V. M. Ustinov, et al., Semiconductors 52, 814 (2012). https://doi.org/10.1134/S1063782612060085

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (no. 17-19-01200-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Solonitsyna.

Ethics declarations

We declare that we have no conflict of interest.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solonitsyna, A.P., Makarevskaya, E.A., Novikov, D.A. et al. Diffusion of Arsenic in GaAs Oxide Irradiated with Ar+ Ions. J. Surf. Investig. 16, 759–763 (2022). https://doi.org/10.1134/S1027451022050196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022050196

Keywords:

Navigation