Skip to main content
Log in

System for Measuring the Spatial Characteristics of Ionizing-Radiation Beams Based on an X-Ray Fluorescent Wire Scanner

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A wire scanner designed to measure the spatial characteristics of beams of relativistic and nonrelativistic charged particles, as well as beams of X-ray and gamma radiation, is proposed. The scanner contains several wires of different materials located along the beam axis and capable of moving across the beam. During scanning, characteristic X-ray radiation is generated in the wires under the action of the beam, the spectra of which are recorded by an energy-dispersive X-ray detector. Determination of the transverse profiles of the studied beam consists in measuring the radiation-intensity dependence on the impact parameter of the wires. Matching of the obtained profiles with specific wires is performed according to the energy of characteristic X-ray radiation. The data obtained during scanning allows determination of the transverse dimensions, shape, trajectory, divergence and emittance of the beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. B. Cheymol, Development of Beam Transverse Profile and Emittance Monitors for the CERN LINAC4 (Université Blaise Pascal Clermont-Ferrand II, Aubière, 2011).

  2. S. Jaster-Merz, R. W. Assmann, F. Burkart, U. Dorda, J. Dreyling-Eschweiler, L. Huth, U. Kramer, and M. Stanitzki, J. Phys.: Conf. Ser. 1596, 012047 (2020). https://doi.org/10.1088/1742-6596/1596/1/012047

    Article  CAS  Google Scholar 

  3. G. P. Razuvaev, S. Bae, H. Choi, S. Choi, H. S. Ko, B. Kim, R. Kitamura, T. Mibe, and M. Otani, J. Instrum. 12, C09001 (2017). https://doi.org/10.1088/1748-0221/12/09/C09001

    Article  Google Scholar 

  4. E. Bravin, arXiv:2005.07400[physics.acc-ph] (2020).

  5. B. Walasek-Hohne, C. Andre, P. Forck, E. Gutlich, G. Kube, P. Lecoq, and A. Reiter, IEEE Trans. Nucl. Sci. 59, 2307 (2012). https://doi.org/10.1109/TNS.2012.2200696

    Article  CAS  Google Scholar 

  6. J. Harasimowicz, L. Cosentino, P. Finocchiaro, A. Pappalardo, and C. P. Welsch, Rev. Sci. Instrum. 81, 103302 (2010). https://doi.org/10.1063/1.3488123

    Article  CAS  Google Scholar 

  7. Y. Ogawa, J.-Y. Choi, T. Suwada, T. Kamitani, T. Urano, K. Furukawa, S. Ohsawa, A. Enomoto, and I. Sato, in Proc. Int. Conference on Particle Accelerators (Washington, DC, 1993), Vol. 3, p. 2516. https://doi.org/10.1109/PAC.1993.309374

  8. S. Bhadra, M. Cadabeschi, P. de Perio, V. Galymov, M. Hartz, B. Kirby, A. Konaka, A. D. Marino, J. F. Martin, D. Morris, and L. Stawnyczy, Nucl. Instrum. Methods Phys. Res., Sect. A 703, 45 (2012). https://doi.org/10.1016/j.nima.2012.11.044

    Article  CAS  Google Scholar 

  9. G. Kube, C. Behrens, A. S. Gogolev, Yu. P. Popov, A. P. Potylitsyn, W. Lauth, and S. Weisse, in Proc. 4th Int. Particle Accelerator Conference (Shanghai, 2013), p. 491.

  10. Y. Takabayashi, Phys. Lett. A 376, 2408 (2012). https://doi.org/10.1016/j.physleta.2012.06.001

    Article  CAS  Google Scholar 

  11. T. Tsang, S. Bellavia, R. Connolly, D. Gassner, Y. Makdisi, T. Russo, P. Thieberger, D. Trbojevic, and A. Zelensk, Rev. Sci. Instrum. 79, 105103 (2008). https://doi.org/10.1063/1.2999905

    Article  CAS  Google Scholar 

  12. V. Tzoganis and C. P. Welsch, Appl. Phys. Lett. 104, 204104 (2014). https://doi.org/10.1063/1.4879285

    Article  CAS  Google Scholar 

  13. N. Kumar, A. Salehilashkajani, H. D. Zhang, M. Ady, P. Forck, J. Glutting, O. R. Jones, R. Kersevan, T. Marriott-Doddington, S. Mazzoni, A. Rossi, G. Schneider, S. Udrea, R. Veness, and C. P. Welsch, Phys. Med. 73, 173 (2008). https://doi.org/10.1016/j.ejmp.2020.04.023

    Article  Google Scholar 

  14. A. Hofmann, IEEE Trans. Nucl. Sci. 28, 2131 (1981). https://doi.org/10.1109/TNS.1981.4331614

    Article  Google Scholar 

  15. R. Bossart, J. Bosser, L. Burnod, E. d’Amico, G. Ferioli, J. Mann, F. Meot, and R. Coisson, in Proc. 11th Int. Conference on High-Energy Accelerators, Experientia Supplementum (Genewa, 1980), Vol. 40, p. 470. https://doi.org/10.1007/978-3-0348-5540-2_60

  16. R. Thurman-Keup, H. W. K. Cheung, A. Hahn, P. Hurh, E. Lorman, C. Lundberg, T. Meyer, D. Miller, S. Pordes, and A. Valishev, J. Instrum. 6, T09003 (2011). https://doi.org/10.1088/1748-0221/6/09/T09003

    Article  CAS  Google Scholar 

  17. M. Castellano, Nucl. Instrum. Methods Phys. Res., Sect. A 391, 375 (1997). https://doi.org/10.1016/S0168-9002(97)00323-9

    Article  CAS  Google Scholar 

  18. A. Jeff and C. P. Welsch, in Proc. 2nd Int. Beam Instrumentation Conference (Oxford, 2013), p. 228.

  19. J. L. Vignet, A. Delannoy, E. Gueroult, P. Gangant, J. C. Foy, S. Cuzon, C. Houarner, and M. Blaizot, in Proc. 9th Eur. Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators (Basel, 2009), p. 176.

  20. D. G. Seely, H. Bruhns, D. W. Savin, T. J. Kvale, E. Galutschek, H. Aliabadi, and C. C. Havener, Nucl. Instrum. Methods Phys. Res., Sect. A 585, 69 (2008). https://doi.org/10.1016/j.nima.2007.10.041

    Article  CAS  Google Scholar 

  21. W. Gelbart, R. R. Johnson, and B. Abeysekera, AIP Conf. Proc. 1509, 38 (2012). https://doi.org/10.1063/1.4773936

    Article  CAS  Google Scholar 

  22. T. Moore, N. I. Agladze, I. V. Bazarov, A. Bartnik, J. Dobbins, B. Dunham, S. Full, Y. Li, X. Liu, J. Savino, and K. Smolenski, Phys. Rev. Spec. Top.—Accel. Beams 17, 022801 (2014). https://doi.org/10.1103/PhysRevSTAB.17.022801

    Article  CAS  Google Scholar 

  23. A. Bosco, M. T. Price, G. A. Blair, S. T. Boogert, G. Boorman, S. Malton, C. Driouichi, T. Kamps, F. Poirier, K. Balewski, E. Elsen, V. Gharibyan, H.‑C. Lewin, S. Schreiber, N. Walker, and K. Wittenburg, Nucl. Instrum. Methods Phys. Res., Sect. A 592, 162 (2008). https://doi.org/10.1016/j.nima.2008.04.012

    Article  CAS  Google Scholar 

  24. Y. Honda, N. Sasao, S. Araki, Y. Higashi, T. Okugi, T. Taniguchi, J. Urakawa, Y. Yamazaki, K. Hirano, M. Nomura, M. Takano, and H. Sakai, Nucl. Instrum. Methods Phys. Res., Sect. A 538, 100 (2005). https://doi.org/10.1016/j.nima.2004.08.122

    Article  CAS  Google Scholar 

  25. R. M. Nazhmudinov, A. S. Kubankin, P. V. Karataev, I. A. Kishin, A. V. Vukolov, A. P. Potylitsyn, P. N. Zhukova, and V. A. Nasonova, J. Instrum. 13, P12012 (2018). https://doi.org/10.1088/1748-0221/13/12/P12012

    Article  CAS  Google Scholar 

  26. R. M. Nazhmudinov, P. V. Karataev, A. S. Kubankin, and A. A. Kaplii, RF Patent No. 182076, Byull. Izobret., No. 22 (2018).

  27. R. M. Nazhmudinov, A. A. Kaplii, A. S. Kubankin, I. A. Kishchin, and E. V. Bolotov, RF Patent No. 204393, Byull. Izobret., No. 15 (2021).

  28. M. C. Ross, J. T. Seeman, E. Bong, L. Hendrickson, D. McCormick, and L. Sanchez-Chopitea, in Proc. of the 1991 IEEE Particle Accelerator Conference (San Francisco, 1991), Vol. 2, p. 1201. https://doi.org/10.1109/PAC.1991.164580

  29. R. I. Cutle, D. L. Mohr, J. K. Whittaker, and N. R. Yoder, IEEE Trans. Nucl. Sci. 30, 2213 (1983). https://doi.org/10.1109/TNS.1983.4332765

    Article  Google Scholar 

  30. X. Llovet, C. J. Powell, F. Salvat, and A. Jablonski, J. Phys. Chem. Ref. Data 43, 013102 (2014). https://doi.org/10.1063/1.4832851

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by a Program of the Ministry of Education and Science of the Russian Federation for higher education establishments (project no. FZWG-2020-0032 (2019-1569)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Nazhmudinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazhmudinov, R.M., Kubankina, A.A., Kishin, I.A. et al. System for Measuring the Spatial Characteristics of Ionizing-Radiation Beams Based on an X-Ray Fluorescent Wire Scanner. J. Surf. Investig. 16, 698–701 (2022). https://doi.org/10.1134/S1027451022050123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022050123

Keywords:

Navigation