Skip to main content
Log in

On the Simulation and Qualitative Analysis of the Diffusion Processes due to Wide Electron Beams in Homogeneous Semiconductor Targets

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Some aspects of mathematical modeling and qualitative analysis of steady-state diffusion processes caused by the interaction of wide beam electrons with homogeneous semi-infinite semiconductor targets are considered. The use of wide electron beams incident normally on the target surface makes it possible to reduce the problem of modeling the diffusion of nonequilibrium minority charge carriers to a one-dimensional one. Consideration is carried out for electron beams with energies from several units to several hundreds of keV. Two mathematical models are studied: the classical mathematical model of so-called collective diffusion and the so-called model of independent sources. The first model considers a differential diffusion equation, the solution of which is a function that describes the distribution of nonequilibrium charge carriers in the volume of a semiconductor. The second model considers a differential diffusion equation that describes the distribution of charge carriers generated in the volume of a semiconductor by an infinitely thin plane parallel to the target surface. For the second model, the desired depth distribution of charge carriers is found by summing the distributions obtained from each infinitely thin plane. For both mathematical models, it is shown that a small change in the experimental conditions leads to a small change in the distribution of minority charge carriers over the target depth. For both models, estimates are given for the influence of the experimental conditions on the distribution of nonequilibrium minority charge carriers as a result of their diffusion in the semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Scanning Microscopy for Nanotechnology: Techniques and Applications, Ed by W. Zhou and Z. L. Wang (Springer, New York, 2007; Binom, Moscow, 2013).

  2. B. G. Yacobi and D. B. Holt, Cathodoluminescence Microscopy of Inorganic Solids (Plenum Press, New York, 1990).

    Book  Google Scholar 

  3. M. A. Stepovich, Doctoral Dissertation in Mathematics and Physics (Bauman Moscow State Tech. Univ., Moscow, 2003).

  4. A. N. Polyakov, A. N. Smirnova, M. A. Stepovich, and D. V. Turtin, Lobachevskii J. Math. 39, 259 (2018). https://doi.org/10.1134/S199508021802021X

    Article  Google Scholar 

  5. M. A. Stepovich, D. V. Turtin, E. V. Seregina, and V. V. Kalmanovich, ITM Web Conf. 30, 07014 (2019). https://doi.org/10.1051/itmconf/20193007014

  6. M. A. Stepovich, D. V. Turtin, E. V. Seregina, and A. N. Polyakov, J. Phys.: Conf. Ser. 1203, 012095 (2019). https://doi.org/10.1088/1742-6596/1203/1/012095

    Article  CAS  Google Scholar 

  7. A. N. Polyakov, M. Noltemeyer, T. Hempel, J. Christen, and M. A. Stepovich, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 901 (2012).

    Article  CAS  Google Scholar 

  8. A. N. Polyakov, M. Noltemeyer, T. Hempel, J. Christen, and M. A. Stepovich, Bull. Russ. Acad. Sci.: Phys. 76, 970 (2012).

    Article  CAS  Google Scholar 

  9. A. N. Polyakov, M. Noltemeyer, T. Hempel, J. Christen, and M. A. Stepovich, Prikl. Fiz., No. 6, 41 (2012).

  10. M. A. Stepovich, D. V. Turtin, and V. V. Kalmanovich, in Transactions of the Tsiolkovsky Kaluga State University, Ser. Natural and Technical Scieces (Kaluzh. Gos. Univ. im. K.E. Tsiolkovskogo, Kaluga, 2021), p. 219.

    Google Scholar 

  11. D. B. Wittry and D. F. Kyser, J. Appl. Phys. 38, 375 (1967).

    Article  CAS  Google Scholar 

  12. D. F. Kyser and D. B. Wittry, J. Proc. IEEE 55, 733 (1967).

    Article  Google Scholar 

  13. T. S. Rao-Sahib and D. B. Wittry, J. Appl. Phys. 40, 3745 (1969).

    Article  CAS  Google Scholar 

  14. N. N. Mikheev, V. I. Petrov, and M. A. Stepovich, Izv. Akad. Nauk SSSR, Ser. Fiz. 55, 1474 (1991).

    CAS  Google Scholar 

  15. N. N. Mikheev and M. A. Stepovich, Zavod. Lab., Diagn. Mater. 62 (4), 20 (1996).

    CAS  Google Scholar 

  16. K. Kanaya and S. Okayama, J. Phys. D: Appl. Phys. 5, 43 (1972).

    Article  CAS  Google Scholar 

  17. A. N. Amrastanov, E. V. Seregina, and M. A. Stepovich, Bull. Russ. Acad. Sci.: Phys. 82, 1187 (2018). https://doi.org/10.3103/S1062873818090034

    Article  CAS  Google Scholar 

  18. A. N. Amrastanov, E. V. Seregina, M. A. Stepovich, and M. N. Filippov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12, 778 (2018). https://doi.org/10.1134/S1027451018040225

    Article  CAS  Google Scholar 

  19. M. A. Stepovich, A. N. Amrastanov, E. V. Seregina, and M. N. Filippov, J. Phys.: Conf. Ser. 955, 012040 (2018). https://doi.org/10.1088/1742-6596/955/1/012040

    Article  CAS  Google Scholar 

  20. A. A. Belov, V. I. Petrov, and M. A. Stepovich, Izv. Akad. Nauk SSSR, Ser. Fiz. 66, 13172 (2002).

    Google Scholar 

  21. M. A. Stepovich, M. G. Snopova, and A. G. Khokhlov, Prikl. Fiz., No. 3, 61 (2004).

  22. M. A. Stepovich, A. G. Khokhlov, and M. G. Snopova, Proc. SPIE 5398, 159 (2004).

    Article  CAS  Google Scholar 

  23. M. G. Snopova, I. V. Burylova, V. I. Petrov, and M. A. Stepovich, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 1, 406 (2007).

    Article  Google Scholar 

  24. I. V. Burylova, V. I. Petrov, M. G. Snopova, and M. A. Stepovich, Semiconductors 41, 444 (2007). https://doi.org/10.1134/S1063782607040161

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 19-03-00271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Stepovich.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepovich, M.A., Turtin, D.V. & Kalmanovich, V.V. On the Simulation and Qualitative Analysis of the Diffusion Processes due to Wide Electron Beams in Homogeneous Semiconductor Targets. J. Surf. Investig. 16, 896–900 (2022). https://doi.org/10.1134/S102745102204036X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102204036X

Keywords:

Navigation