Skip to main content
Log in

Study of Memristors Based on Silicon-Oxide Films Implanted with Zinc

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Nanoclusters of metals and metal-oxide compounds in various solid-state matrices can find application in promising microelectronic devices. The results of studying memristors based on silicon-oxide films implanted with 64Zn+ ions (dose of 3 × 1016 cm–2 and energy of 40 keV) at room temperature and annealed at temperatures from 400 to 800°C in an oxidizing environment are presented. The concentration profiles of implanted zinc, as well as matrix elements, silicon and oxygen, are obtained via the Rutherford backscattering spectroscopy of He+ ions with an energy of 2 MeV. The surface topology is investigated using a scanning probe microscope in the atomic-force-microscopy mode and Kelvin mode. After implantation, sample-surface smoothing occurs due to sputtering. Further, during thermal annealing, the surface roughness increases and broadening of the roughness distribution is observed in comparison with the implanted sample. The images of the surface potential obtained in the Kelvin mode differ in terms of the sign of the signal: positive, for the initial sample, and negative, for the sample annealed at 800°C. The phase composition of the films is studied using X-ray diffraction analysis in the grazing geometry. It is found that crystalline phase of Zn was formed in the SiO2 film after implantation. After annealing at 800°C, the Zn phase is mainly transformed into the zinc silicide (willemite) Zn2SiO4 phase and partially into the ZnO phase. The analysis of small peaks in the diffraction patterns carried out using the EVA program indicates that the β-Zn2SiO4 and Zn1.95SiO4 phases are formed in the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. M. I. Baraton, Synthesis, Functionalization, and Surface Treatment of Nanoparticles (Am. Sci., Los Angeles, 2002).

    Google Scholar 

  2. T. C. Collins and D. S. Reynolds, Zinc Oxide Material for Electronic and Optoelectronic Device Application (Wiley, Chichester, 2011).

    Google Scholar 

  3. C. Flytzanis, F. Haqche, M. C. Klein, D. Ricard, and Ph. Roussignol, Prog. Opt. 291, 321 (1991).

    Article  Google Scholar 

  4. C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, Appl. Phys. Lett. 90, 263501 (2007).

    Article  Google Scholar 

  5. G. P. Smestad and M. Gratzel, J. Chem. Educ. 75, 752 (1998).

    Article  CAS  Google Scholar 

  6. C. Li, Y. Yang, X. W. Sun, W. Lei, X. B. Zhang, B. P. Wang, J. X. Wang, B. K. Tay, J. D. Ye, G. Q. Lo, and D. L. Kwong, Nanotecnology 18, 135604 (2007).

    Article  CAS  Google Scholar 

  7. B. B. Straumal, A. A. Mazilkin, S. G. Protasova, et al., Phys. Rev. B 79, 205206 (2009).

    Article  Google Scholar 

  8. S. Chu, M. Olmedo, Zh. Yang, et al., Appl. Phys. Lett. 93, 181106 (2008).

    Article  Google Scholar 

  9. J. S. Dodds, F. N. Meyers, and K. J. Loh, Smart Struct. Syst. 12, 055 (2013).

  10. A. Sirelkhatim, S. Mahmud, A. Seeni, et al., Nano-Micro Lett. 7, 219 (2015).

    Article  CAS  Google Scholar 

  11. S. Inbasekaran, R. Senthil, G. Ramamurthy, and T. P. Sastry, Eng. Technol. 3, 8601 (2014).

    Google Scholar 

  12. K.-C. Chang, T.-M. Tsai, R. Zhang, et al., Appl. Phys. Lett. 103, 083509 (2013).

    Article  Google Scholar 

  13. J.-S. Huang, W.-C. Yen, S.-M. Lin, et al., J. Mater. Chem. C 2, 4401 (2014).

    Article  CAS  Google Scholar 

  14. H. Amekura, Y. Takeda, and N. Kishimoto, Mater. Lett. 222, 96 (2011).

    Google Scholar 

  15. Y. Y. Shen, X. D. Zhang, D. C. Zhang, Y. H. Xue, L. H. Zhang, and C. L. Liu, Mater. Lett. 65, 2966 (2011).

    Article  CAS  Google Scholar 

  16. V. Privezentsev, V. Kulikauskas, E. Steinman, and A. Bazhenov, Phys. Status Solidi C 10, 48 (2013).

    Article  CAS  Google Scholar 

  17. V. V. Privezentsev, A. N. Palagushkin, V. A. Skuratov, V. S. Kulikauskas, V. V. Zatekin, A. V. Makunin, D. A. Kiselev, E. A. Steinman, and A. N. Tereshchenko, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13, 326 (2019).

    Article  CAS  Google Scholar 

  18. E. V. Khramov, V. V. Privezentsev, A. N. Palagushkin, K. D. Shchebachev, and N. Yu. Tabachkova, J. Electron. Mater. 49, 7343 (2020). https://doi.org/10.1007/s11664-020-08454-7

    Article  CAS  Google Scholar 

  19. V. V. Privezentsev, A. P. Sergeev, E. P. Kirilenko, A. V. Goryachev, O. S. Zilova, A. A. Burmistrov, and A. A. Batrakov, J. Mater. Sci.: Mater. Electron. 32, 4581 (2021).

    CAS  Google Scholar 

  20. J. F. Ziegler and J. P. Biersack, SRIM 2008. http://www.srim.org.

  21. Gwyddion. http://gwyddion.net.

  22. SIMNRA. http://www.simnra.com.

  23. S. V. Kalinin and D. A. Bonnell, Nano Lett. 4, 555 (2004).

    Article  CAS  Google Scholar 

  24. DIFFRAC.EVA Bruker. http://www.bruker.com.

Download references

Funding

The study was carried out as a part of the state assignments of the Federal State Institution Federal Scientific Center “Scientific and Research Institute for System Analysis” of the Russian Academy of Sciences no. 0580-2022-0003 (AAAA-A19-119011590090-2) and National Research University of Science and Technology “MISiS” (project nos. 075-15-2021-696 and 0718-2020-0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Privezentsev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Privezentsev, V.V., Kulikauskas, V.S., Zatekin, V.V. et al. Study of Memristors Based on Silicon-Oxide Films Implanted with Zinc. J. Surf. Investig. 16, 402–407 (2022). https://doi.org/10.1134/S1027451022030314

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022030314

Keywords:

Navigation