Skip to main content
Log in

Study of a SiO2/Si Structure Implanted with 64Zn+ and 16O+ Ions and Heat Treated in a Neutral Inert Environment

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The surface layer of a SiO2/Si structure implanted with Zn+ and O+ ions and annealed in neutral and inert atmospheres is studied. At first, n-Si(100) silicon plates are oxidized in dry O2 to achieve an oxide-film thickness of 0.2 μm. Then, at room temperature, they are sequentially implanted with a dose of 5 × 1016 cm–2 of 70-keV 64Zn+ ions and with a dose of 6.1 × 1016 cm–2 of 40-keV \(^{{16}}{\text{O}}_{2}^{ + }\) ions. Plate overheating, compared with room temperature, does not exceed 70°C. The samples are isochronously annealed for 1 h in N2 at a temperature from 400 to 600°C and then in Ar in the range of 700–1000°C with a step of 100°C. After implantation, the crystalline phase Zn(102) is found to form in the SiO2 film. After annealing at 700°C, Zn is oxidized to form the ZnO phase. Analysis of the diffraction patterns shows the β-Zn2SiO4 and Zn1.95SiO4 phases to be additionally formed in the samples after annealing at 800°C. After annealing at 900°C and above, the ZnO phase was not detected in the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. C. W. Litton, T. C. Collins, and D. S. Reynolds, Zinc Oxide Material for Electronic and Optoelectronic Device Application (Wiley, Chichester 2011).

    Book  Google Scholar 

  2. C. Flytzanis, F. Haqche, M. C. Klein, et al., Prog. Optics 29, 321 (1999).

    Article  Google Scholar 

  3. C. Y. Jiang, X. W. Sun, G. Q. Lo, et al., Appl. Phys. Lett. 90, 263501 (2007).

    Article  Google Scholar 

  4. C. Li, Y. Yang, X. W. Sun, et al., Nanotecnology 18, 135604 (2007).

    Article  Google Scholar 

  5. S. Chu, M. Olmedo, Zh. Yang, et al., Appl. Phys. Lett. 93, 181106 (2008).

    Article  Google Scholar 

  6. G. P. Smestad and M. Gratzel, J. Chem. Educ. 75, 752 (1998).

    Article  Google Scholar 

  7. B. B. Straumal, A. A. Mazilkin, S. G. Protasova, et al., Phys. Rev. B 79, 205206 (2009).

    Article  Google Scholar 

  8. F. N. Meyers and K. J. Loh, Smart Struct. Syst. 12, 055 (2013).

  9. A. Sirelkhatim, S. Mahmud, A. Seeni, et al., Nano-Micro Lett. 7, 219 (2015).

    Article  Google Scholar 

  10. S. Inbasekaran, R. Senthil, G. Ramamurthy, and T. P. Sastry, Intern. J. Innov. Res. Sci. Engin. Tec 3, 8601(2014).

    Google Scholar 

  11. H. Amekura, Y. Takeda, and N. Kishimoto, Mater. Lett. 222, 96 (2011).

    Google Scholar 

  12. Y. Y. Shen, X. D. Zhang, D. C. Zhang, et al., Mater. Lett. 65, 2966 (2011).

    Article  Google Scholar 

  13. V. Privezentsev, V. Kulikauskas, E. Steinman, A. Bazhenov, et al., Phys. Status Solidi C 10, 48 (2013).

    Article  Google Scholar 

  14. J. F. Ziegler and J. P. Biersack, SRIM 2008, http://www.srim.org

  15. Diffusion in Condensed Matter: Methods, Materials, Models, Ed. by P. Heitjans and J. Kärger (Springer, 2005).

    Google Scholar 

  16. H. Amekura, Y. Sakuma, K. Kono, et al., Physica B 376–377, 760 (2006).

    Article  Google Scholar 

  17. D. M. Bagnall, Y. F. Chen, M. Y. Shen, et al., J. Cryst. Growth 184–185, 605 (1998).

    Article  Google Scholar 

  18. H. Chang, H. D. Park, K. S. Sohn, and J. D. Lee, J. Korean Phys. Soc 34, 545 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Privezentsev.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Privezentsev, V.V., Kulikauskas, V.S., Zatekin, V.V. et al. Study of a SiO2/Si Structure Implanted with 64Zn+ and 16O+ Ions and Heat Treated in a Neutral Inert Environment. J. Surf. Investig. 13, 382–386 (2019). https://doi.org/10.1134/S1027451019030169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019030169

Keywords:

Navigation