Skip to main content
Log in

Microstructure, Phase Composition, Substructure and Residual Stress of AK5M7 Aluminum Alloy after its Electrospark Treatment

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

This article presents the results of investigating the microstructure, phase composition, parameters of the substructure and residual stresses of the surface layer of AK5M7 alloy after its electrospark treatment (EST) using a copper-phosphorus electrode. The main variable is the EST energy. The analyzed material is a multiphase system. The main phases are as follows: aluminum, Al2Cu, and Cu3Al. An increase in the energy of electrospark treatment is accompanied by an increase in the fractions of Al2Cu and Cu3Al, microscopic deformations and residual stresses, as well as a decrease in the sizes of subblocks. For the aluminum phase, the residual stresses are tensile, and for Al2Cu, the stresses are compressive. Analysis of the intensity of diffraction lines reveals possible texture in the treated layer. An increase in the energy of electrospark treatment results in the chaotic distribution of the orientation of grains of the generated crystallographic phases. The obtained results can be attributed to nonequilibrium processes in the surface layer at high mechanical and thermal impacts accompanied by micrometallurgical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. A. Velichko, P. V. Senin, and P. V. Chumakov, Increasing the Durability of Piston Hydraulic Cylinders Using Electrospark Technology (Mordov. Gos. Univ., Saransk, 2016) [in Russian].

    Google Scholar 

  2. N. E. Fomin, I. Kh. Khasan, and V. M. Kyashkin, Vestn. Donsk. Gos. Tekh. Univ. 19, 138 (2019). https://doi.org/10.23947/1992-5980-2019-19-2-138-142

    Article  Google Scholar 

  3. D. A. Ignat’kov, Elektron. Obrab. Mater., No. 4, 9 (2001).

  4. F. Kh. Burumkulov, V. P. Lyalyakin, I. A. Pushkin, and S. N. Frolov, Mekh. Elektrif. Sel’sk. Khoz., No. 4, 23 (2001).

  5. S. I. Smagin, V. D. Vlasenko, and Yu. I. Mulin, Vychislit. Tekhnol., 14 (3), 79 (2009).

    Google Scholar 

  6. A. D. Verkhoturov, V. I. Ivanov, and L. A. Konevtsov, Tr. GOSNITI 107, 131 (2011).

    Google Scholar 

  7. V. D. Vlasenko and M. V. Kolisova, Contemporary Engineering Sci. 9, 249 (2016). https://doi.org/10.12988/ces.2016.611

    Article  Google Scholar 

  8. E. V. Yurchenko and V. I. Ivanov, Tr. GOSNITI 117, 251 (2014).

    Google Scholar 

  9. S. Ya. Betsofen, L. M. Petrov, and A. A. Il’in, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 1, 39 (2004).

  10. S. Ya. Betsofen, A. A. Ashmarin, A. A. Lozovan, B. V. Ryabenko, A. N. Lutsenko, A. M. Mamonov, and D. E. Molostov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10, 705 (2016). https://doi.org/10.1134/S1027451016040054

    Article  CAS  Google Scholar 

  11. T. Gnaupel-Herold, J. Appl. Crystallogr. 45, 573 (2012). https://doi.org/10.1107/S0021889812014252

    Article  CAS  Google Scholar 

  12. S. Wang and C. Fan, Metals 9, 1037 (2019). https://doi.org/10.3390/met9101037

    Article  CAS  Google Scholar 

  13. H. Liu, I. Papadimitriou, F. X. Lin, and J. L. Lorca, Acta Mater. 167, 121 (2019). https://doi.org/10.1016/j.actamat.2019.01.024

    Article  CAS  Google Scholar 

  14. Ya. S. Umanskii, Radiography of Metals (Metallurgiya, Moscow, 1967) [in Russian].

    Google Scholar 

  15. S. A. Pyachin, N. E. Ablesimov, and D. L. Yagodzinskii, Elektron. Obrab. Mater., No. 1, 19, (2003).

  16. N. Ya. Parkanskii, M. S. Kats, M. G. Gol’diner, and A. E. Gitlevich, Elektron. Obrab. Mater., No. 3, 20 (1982).

  17. N. Dolgopolov, A. Rodin, A. Simanov, and I. Contar’, Mater. Lett. 62, 4477 (2008). https://doi.org/10.3103/S1067821209020114

    Article  CAS  Google Scholar 

  18. N. N. Goreslavets and A. O. Rodin, Phys. Met. Metallogr. 118, 1120 (2017). https://doi.org/10.1134/S0031918X17100064

    Article  CAS  Google Scholar 

  19. J. Pelleg, L. Z. Zevin, S. Lungo, and N. Croitoru, Thin Solid Films 197, 117 (1991). https://doi.org/10.1016/0040-6090(91)90225-M

    Article  CAS  Google Scholar 

  20. B. Rauschenbach and J. W. Gerlach, Cryst. Res. Technol. 35, 675 (2000). https://doi.org/10.1002/1521-4079(200007)35:6/7<675::AID-CRAT675>3.0.CO;2-7

    Article  CAS  Google Scholar 

  21. J. P. Zhao, X. Wang, and Z. Y. Chen, J. Phys. D: Appl. Phys. 30, 5 (1997).

    Article  CAS  Google Scholar 

  22. V. K. Afanas’ev, A. V. Gorshenin, M. A. Starostina, I. V. Degtyareva, and E. V. Pervakova, Metall. Mashinostr., No. 3, 30 (2010).

Download references

ACKNOWLEDGMENTS

We are grateful to Prof. N.E. Fomin, Head of the Chair of Solid State Physics, and V.M. Kyashkin, Assistant Professor of the Chair of Solid State Physics, Ogarev Mordovia State University, for performing the X-ray investigations and discussion of the experimental results.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. K. Hasan or N. A. Pan’kin.

Additional information

Translated by I. Moshkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, I.K., Pan’kin, N.A. Microstructure, Phase Composition, Substructure and Residual Stress of AK5M7 Aluminum Alloy after its Electrospark Treatment. J. Surf. Investig. 15, 1080–1086 (2021). https://doi.org/10.1134/S1027451021050281

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021050281

Keywords:

Navigation