Skip to main content
Log in

Microstructural evolution in Al-Zn-Mg-Cu-Sc-Zr alloys during short-time homogenization

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Microstructural evolution in a new kind of aluminum (Al) alloy with the chemical composition of Al-8.82Zn-2.08Mg-0.80Cu-0.31Sc-0.3Zr was investigated. It is found that the secondary phase MgZn2 is completely dissolved into the matrix during a short homogenization treatment (470°C, 1 h), while the primary phase Al3(Sc,Zr) remains stable. This is due to Sc and Zr additions into the Al alloy, high Zn/Mg mass ratio, and low Cu content. The experimental findings fit well with the results calculated by the homogenization diffusion kinetics equation. The alloy shows an excellent mechanical performance after the short homogenization process followed by hot-extrusion and T6 treatment. Consequently, a good combination of low energy consumption and favorable mechanical properties is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.A. Godinho, A.L.R. Beletati, E.J. Giordano, and C. Bolfarini, Microstructure and mechanical properties of a spray formed and extruded AA7050 recycled alloy, J. Alloys Compd., 586(2014), No. S1, p. S139.

    Article  Google Scholar 

  2. L. Rogal, J. Dutkiewicz, H. Atkinson, L. Litynska-Dobrzynska, T. Czeppe, and M. Modigell, Characterization of semi-solid processing of aluminium alloy 7075 with Sc and Zr additions, Mater. Sci. Eng. A, 580(2013), p. 362.

    Article  Google Scholar 

  3. W.B. Li, Q.L. Pan, Y.P. Xiao, Y.B. He, and X.Y. Liu, Microstructural evolution of ultra-high strength Al-Zn-Cu-Mg-Zr alloy containing Sc during homogenization, Trans. Nonferrous Met. Soc. China, 21(2011), No. 10, p. 2127.

    Article  Google Scholar 

  4. S.Y. Chen, K.H. Chen, GS. Peng, X.H. Chen, and Q.H. Ceng, Effect of heat treatment on hot deformation behavior and microstructure evolution of 7085 aluminum alloy, J. Alloys Compd., 537(2012), p. 338.

    Article  Google Scholar 

  5. X.G. Fan, D.M. Jiang, Q.C. Meng, and L. Zhong, The microstructural evolution of an Al-Zn-Mg-Cu alloy during homogenization, Mater. Lett., 60(2006), No. 12, p. 1475.

    Article  Google Scholar 

  6. L.M. Wu, W.H. Wang, Y.F. Hsu, and S. Trong, Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al-Zn-Mg-Sc-Zr alloy, J. Alloys Compd., 456(2008), No. 1–2, p. 163.

    Article  Google Scholar 

  7. Y.L. Deng, Y.Y. Zhang, L. Wan, A.A. Zhu, and X.M. Zhang, Three-stage homogenization of Al-Zn-Mg-Cu alloys containing trace Zr, Metall. Mater. Trans. A, 44(2013), No. 6, p. 2470.

    Article  Google Scholar 

  8. H. Li, D.H. Cao, Z.X., Wang, and Z.Q. Zheng, High-pressure homogenization treatment of Al-Zn-Mg-Cu aluminum alloy, J. Mater. Sci., 43(2008), No. 5, p. 1583.

    Article  Google Scholar 

  9. A.F. Norman, P.B. Prangnell, and R.S. McEwen, The solidification behaviour of dilute aluminium–scandium alloys, Acta Mater., 46(1998), No. 16, p. 5715.

    Article  Google Scholar 

  10. I.G. Brodova, D.V. Bashlikov, and I.V. Polents, Influence of heat time melt treatment on the structure and the properties of rapidly solidified aluminum alloys with transition metals, Mater. Sci. Forum, 269–272(1998), p. 589.

    Article  Google Scholar 

  11. S. Golubev, O. Korzhavina, P. Popel, V. Kononenko, I. Brodova, I. Polents and T. Shubina, Effect of viscosity and electrical-resistance of the structural state of Al-Sc melts and the structure of the cast metal, Russ. Metall., (1991), No. 1, p. 44.

    Google Scholar 

  12. E.A. Marquis and D.N. Seidman, Coarsening kinetics of nanoscale Al3Sc precipitates in an Al-Mg-Sc alloy, Acta Mater., 53(2005), No. 15, p. 4259.

    Article  Google Scholar 

  13. J.D. Robson and P.B. Prangnell, Modelling Al3Sc dispersoid precipitation in multicomponent aluminium alloys, Mater. Sci. Eng. A, 352(2003), No. 1–2, p. 240.

    Article  Google Scholar 

  14. N. Blake and M. Hopkins, Constitution and age hardening of Al-Sc alloys, J. Mater. Sci., 20(1985), No. 8, p. 2861.

    Article  Google Scholar 

  15. M.J. Jones and F.J. Humphreys, Interaction of recrystallization and precipitation: the effect of Al3Sc on the recrystallization behaviour of deformed aluminium, Acta Mater., 51(2003), No. 8, p. 2149.

    Article  Google Scholar 

  16. D.N. Seidman, E.A. Marquis, and D.C. Dunand, Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al (Sc) alloys, Acta Mater., 50(2002), No. 16, p. 4021.

    Article  Google Scholar 

  17. Y. Deng, Z.M. Yin, K. Zhao, J.Q. Duan, and Z.B. He, Effects of Sc and Zr microalloying additions on the microstructure and mechanical properties of new Al-Zn-Mg alloys, J. Alloys Compd., 530(2012), p. 71.

    Article  Google Scholar 

  18. K.B. Hyde, A.F. Norman, and P.B. Prangnell, The effect of cooling rate on the morphology of primary Al3Sc intermetallic particles in Al-Sc alloys, Acta Mater., 49(2001), No. 8, p. 1327.

    Article  Google Scholar 

  19. J. Røyset and N. Ryum, Scandium in aluminium alloys, Int. Mater. Rev., 50(2005), No. 1, p. 19.

    Article  Google Scholar 

  20. Y. Deng, Z.M. Yin, and F.G. Cong, Intermetallic phase evolution of 7050 aluminum alloy during homogenization, Intermetallics, 26(2012), p. 114.

    Article  Google Scholar 

  21. X.M. Li and J.J. Yu, Modeling the effects of Cu variations on the precipitated phases and properties of Al-Zn-Mg-Cu alloys, J. Mater. Eng. Perform., 22(2013), No. 10, p. 2970.

    Article  Google Scholar 

  22. S.K. Maloney, K. Hono, I.J. Polmear, and S.P. Ringer, The chemistry of precipitates in an aged Al-2.1Zn-1.7Mg at.% alloy, Scripta Mater., 41(1999),No.10, p. 1031.

    Article  Google Scholar 

  23. M. R. Clinch, S. J. Harris, W. Hepples, N. J. H. Holroyd, M. J. Lawday, and B. Noble, Influence of zinc to magnesium ratio and total solute content on the strength and toughness of 7xxx series alloys, Mater. Sci. Forum, 519(2006), p. 339.

    Article  Google Scholar 

  24. H.J. Wang, J. Xu, Y.L. Kang, M.G. Tang, and Z.F. Zhang, Study on inhomogeneous characteristics and optimize homogenization treatment parameter for large size DC ingots of Al-Zn-Mg-Cu alloys, J. Alloys Compd., 585(2014), p. 19.

    Article  Google Scholar 

  25. O.N. Senkov, R.B. Bhat, S.V. Senkova, and J.D. Schloz, Microstructure and properties of cast ingots of Al-Zn-Mg-Cu alloys modified with Sc and Zr, Metall. Mater. Trans. A, 36(2005), No. 8, p. 2115.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nai-qin Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., He, Cn., Li, G. et al. Microstructural evolution in Al-Zn-Mg-Cu-Sc-Zr alloys during short-time homogenization. Int J Miner Metall Mater 22, 516–523 (2015). https://doi.org/10.1007/s12613-015-1101-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1101-3

Keywords

Navigation