Skip to main content
Log in

Submicron Corrugation оf Polyacrylonitrile-Based Carbon Fiber by High-Fluence Ion Irradiation

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

We perform submicron corrugation of the surface of nongraphitized (processing temperature 1400°C) and graphitized (processing temperature 2800°C) Zoltek PX35 polyacrylonitrile carbon fibers by high-fluence irradiation with nitrogen and argon ions with an energy of 30 keV. The microgeometry of the surfaces of nongraphitized and graphitized carbon fibers irradiated with nitrogen ions is characterized by the presence of corrugations with different periods and heights at the same inclination of their faces. The similarity and difference in the microstructure of the surface layer of carbon fiber after heat treatment and ion irradiation, observed by Raman spectroscopy data, are analyzed and discussed. The data obtained suggest an increase in the tensile strength of the modified carbon-fiber layer with a decrease in the elastic modulus. The reasons and conditions for the corrugation of carbon fibers during their ion irradiation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. Ya. Varshavskii, Carbon Fibers (VINITI, Moscow, 2005) [in Russian].

    Google Scholar 

  2. A. I. Meleshko and S. P. Polovnikov, Carbon, Carbon Fibers, Carbon Composites (Sains-Press, Moscow, 2007) [in Russian].

    Google Scholar 

  3. N. N. Andrianova, V. A. Anikin, A. M. Borisov, et al., Bull. Russ. Acad. Sci.: Phys. 82, 122 (2018). https://doi.org/10.3103/S106287381802003X

    Article  CAS  Google Scholar 

  4. V. A. Anikin, A. M. Borisov, A. V. Makunin, et al., Phys. At. Nucl. 81, 1547 (2018). https://doi.org/10.1134/S1063778818110029

    Article  CAS  Google Scholar 

  5. A. M. Borisov, N. G. Chechenin, V. A. Kazakov, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 460, 132 (2019).

    CAS  Google Scholar 

  6. N. N. Andrianova, A. M. Borisov, V. A. Kazakov, et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 14, 231 (2020). https://doi.org/10.1134/S1027451020020202

    Article  CAS  Google Scholar 

  7. N. N. Andrianova, A. M. Borisov, V. A. Kazakov, et al., Bull. Russ. Acad. Sci.: Phys. 84, 707 (2020). https://doi.org/10.3103/S1062873820060039

    Article  CAS  Google Scholar 

  8. V. Ya. Varshavskii, E. P. Mayanov, A. A. Sviridov, et al., Kompoz. Nanostrukt., No. 4, 419 (2009).

  9. F. Yang, G. Hu, H. He, et al., J. Mater. Sci. 54, 8800 (2019).

    Article  CAS  Google Scholar 

  10. A. C. Ferrari and J. Robertson, Phys. Rev. B: Condens. Matter Mater. Phys. 61, 14095 (2000).

    Article  CAS  Google Scholar 

  11. M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, et al., Phys. Chem. Chem. Phys. 9, 1276 (2007).

    Article  CAS  Google Scholar 

  12. N. Larouche and B. L. Stansfield, Carbon 48, 620 (2010).

    Article  CAS  Google Scholar 

  13. A. M. Borisov, Y. S. Virgil’ev, and E. S. Mashkova, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2, 52 (2008). https://doi.org/10.1007/s11700-008-1009-x

    Article  Google Scholar 

  14. M. V. Ivanov, N. V. Gavrilov, T. A. Belyh, et al., Surf. Coat. Technol. 201, 8326 (2007).

    Article  CAS  Google Scholar 

  15. V. A. Anikin, N. N. Andrianova, A. M. Borisov, et al., J. Phys.: Conf. Ser. 941, 012029 (2017).

    Google Scholar 

  16. K. Niwase, Int. J. Spectrosc. 2012, 197609 (2012).

    Article  Google Scholar 

  17. S. Muhl and J. M. Mendes, Diamond Relat. Mater. 8, 1808 (1999).

    Article  Google Scholar 

  18. A. C. Ferrari and J. Robertson, Philos. Trans. R. Soc., A 362, 2477 (2004).

  19. Yu. S. Virgil’ev and I. P. Kalyagina, Inorg. Mater. 1 (suppl. 1), 33 (2004).

    Article  Google Scholar 

  20. T. D. Burchell, MRS Bull. 22 (4), 29 (1997).

    Article  CAS  Google Scholar 

  21. R. Blackstone, J. Nucl. Mater. 65, 72 (1977).

    Article  CAS  Google Scholar 

  22. E. I. Zhmurikov, I. A. Bubnenkov, V. V. Dremov, et al., Graphite in Science and Nuclear Engineering (Sib. Otd. Ross. Acad. Nauk, Novosibirsk, 2013) [in Russian].

    Google Scholar 

  23. V. E. Panin and A. V. Panin, Fiz. Mezomekh. 8 (5), 7 (2005).

    CAS  Google Scholar 

  24. A. R. Shugurov and A. V. Panin, Fiz. Mezomekh. 12 (3), 23 (2009).

    CAS  Google Scholar 

  25. W. L. Chan and E. Chason, J. Appl. Phys. 101, 121301 (2007).

    Article  Google Scholar 

  26. V. I. Emel’yanov, Quantum Electron. 29, 561 (1999).

    Article  Google Scholar 

  27. V. I. Emel’yanov, Bull. Russ. Acad. Sci.: Phys. 74, 108 (2010).

    Article  Google Scholar 

  28. V. I. Emel’yanov and D. M. Seval’nev, Laser Phys. 21, 566 (2011).

    Article  Google Scholar 

  29. J.-H. Kim and J.-S. Kim, Nucl. Instrum. Methods Phys. Res., Sect. B 383, 59 (2916).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Borisov.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrianova, N.N., Borisov, A.M., Vysotina, E.A. et al. Submicron Corrugation оf Polyacrylonitrile-Based Carbon Fiber by High-Fluence Ion Irradiation. J. Surf. Investig. 15, 230–235 (2021). https://doi.org/10.1134/S1027451021020026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021020026

Keywords:

Navigation