Skip to main content
Log in

Hybrid Nine-Pole Wiggler as a Source of “Hard” X-ray Radiation at the VEPP-4 Accelerator Complex

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

At the Institute of Nuclear Physics, a nine-pole hybrid wiggler is developed and successfully installed on the VEPP-4 accelerator complex. The nine poles of the wiggler are electromagnets with iron cores. To achieve the largest field, permanent magnets with a residual induction of 1.2 T are installed between the wiggler poles. Such a combination of electromagnets and permanent magnets made it possible to achieve a maximum magnetic induction of 1.9 T, with an interpolar gap of 30 mm. Currently, at the Siberian Center of Synchrotron and Terahertz Radiation, several research methods using the “hard” X-ray range (50–250 keV) based on radiation from a nine-pole wiggler are being certified. For example, using this radiation, the X‑ray imaging of fast processes, X-ray computed tomography, X-ray fluorescence analysis, and X-ray diffraction studies are carried out. A brief review of these studies is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. B. Levichev, Phys. Part. Nucl. Lett. 13, 883 (2016).

    Article  Google Scholar 

  2. V. V. Anashin, V. M. Aulchenko, E. M. Baldin, et al., Phys. Part. Nuclei 44, 657 (2013).

    Article  Google Scholar 

  3. A. N. Aleshaev, P. I. Zubkov, G. N. Kulipanov, et al., Fiz. Goreniya Vzryva, 37 (5), 104 (2001).

    Google Scholar 

  4. H. Motz, W. Thon, and R. N. Whiterhurst, J. Appl. Phys. 7, 826 (1953). https://doi.org/10.1063/1.1721389

    Article  Google Scholar 

  5. P. Vobly, G. Baranov, E. Levichev, et al., IEEE Trans. Appl. Supercond. 28 (3), 4101403 (2018). https://doi.org/10.1109/TASC.2018.2791921

    Article  Google Scholar 

  6. P. A. Piminov, G. N. Baranov, A. V. Bogomyagkov, et al., Phys. Procedia 84, 26 (2016).

    Article  Google Scholar 

  7. Comsol Application. www.comsol.ru

  8. M. Grotzer, E. Schultke, E. Brauer-Krisch, et al., Phys. Med 31 (6), 564 (2015).

    Article  CAS  Google Scholar 

  9. K. E. Kuper, E. L. Zavjalov, I. A. Razumov, et al., Phys. Procedia 84, 252 (2016).

    Article  CAS  Google Scholar 

  10. A. S. Arakcheev, A. N. Shmakov, M. R. Sharafutdinov, et al., J. Struct. Chem. 57, 1314 (2016). https://doi.org/10.15372/JSC20160703

    Article  CAS  Google Scholar 

  11. A. A. Legkodymov, K. E. Kuper, V. P. Naz’mov, et al., Bull. Russ. Acad. Sci.: Phys. 79, 103 (2015). https://doi.org/10.3103/S1062873815010207

    Article  CAS  Google Scholar 

  12. K. Tsuji, J. Injuk, and R. van Grieken, X-Ray Spectrometry: Recent Technological Advances (John Wiley &Sons, Chichester, 2004).

    Book  Google Scholar 

Download references

Funding

The study was supported by a grant from the Russian Science Foundation (project no. 14-50-00080) using the unique research facility “VEPP-4–VEPP-2000 Complex” with financial support from the Ministry of Education and Science of the Russian Federation (unique project identifier RFMEFI61917X0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Baranov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranov, G.H., Cooper, K.E., Piminov, P.A. et al. Hybrid Nine-Pole Wiggler as a Source of “Hard” X-ray Radiation at the VEPP-4 Accelerator Complex. J. Surf. Investig. 14, 1290–1293 (2020). https://doi.org/10.1134/S1027451020060269

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020060269

Keywords:

Navigation