Skip to main content
Log in

Taking into Account the Surface Roughness in the Electron-Probe Energy-Dispersive Analysis of Powder Materials

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The features of the electron-probe energy-dispersive spectra of several powder materials are studied. Comparing the experimental results with published data, it is established that the effect of a difference in absorption is the main factor that affects the results of quantitative analysis. To describe the peculiarities of attenuation of the intensity of X-ray photons in powders, a theoretical absorption model is proposed and tested. In the described model, the surface of a sample is considered to be a combination of a large number of randomly oriented planes. The experimental data and simulation results are compared by analyzing the ratio of diagnostic-line intensities. The proposed model of attenuation of the characteristic radiation intensity in the powders agrees well with the experimental data. A mathematical method for taking into account the surface roughness can be used in computer algorithms for simulating the characteristic X-ray radiation and can be included in software for electron-probe analysis as an additional corrector in calculation of the elemental composition of the powder materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. D. E. Newbury and N. W. M. Ritchie, J. Mater. Sci. 50 (2), 493 (2015). https://doi.org/10.1007/s10853-014-8685-2

    Article  CAS  Google Scholar 

  2. D. E. Newbury and N. W. M. Ritchie, Scanning 35 (3), 141 (2013). https://doi.org/10.1002/sca.21041

    Article  CAS  Google Scholar 

  3. Yu. G. Lavrent’ev, N. S. Karmanov, and L. V. Usova, Geol. Geofiz. 56 (8), 1473 (2015). https://doi.org/10.15372/GiG20150806

    Article  CAS  Google Scholar 

  4. J. I. Goldstein, D. E. Newbury, J. R. Michael, et al., Scanning Electron Microscopy and X-Ray Microanalysis (Springer, New York, 2018). https://doi.org/10.1007/978-1-4939-6676-9

    Book  Google Scholar 

  5. D. E. Newbury and N. W. M. Ritchie, Microsc. Microanal. 19 (S2), 1244 (2013). https://doi.org/10.1017/S1431927613008210

    Article  Google Scholar 

  6. Handbook of X-Ray Spectrometry, Ed. by R. E. Van Grieken and A. A. Markowicz, 2nd ed. (CRC, New York, 2001).

  7. D. E. Newbury, Scanning 26, 103 (2004). https://doi.org/10.1002/sca.4950260302

    Article  CAS  Google Scholar 

  8. J. T. Armstrong and P. R. Buseck, Anal. Chem. 47 (13), 2178 (1975). https://doi.org/10.1021/ac60363a033

    Article  CAS  Google Scholar 

  9. J. T. Armstrong and P. R. Buseck, X-Ray Spectrosc. 14 (4), 172 (1985). https://doi.org/10.1002/xrs.1300140408

    Article  CAS  Google Scholar 

  10. J. T. Armstrong, in Electron Probe Quantification, Ed. by K. J. F. Heinrich and D. E. Newbury (Plenum, New York, 1991), p. 261. https://doi.org/10.1007/978-1-4899-2617-315

    Book  Google Scholar 

  11. R. Gauvin, P. Hovington, and D. Drouin, Scanning 17 (4), 202 (1995). https://doi.org/10.1002/sca.4950170401

    Article  CAS  Google Scholar 

  12. H. M. Storms, K. H. Janssens, S. B. Torok, and R. E. Van Grieken, X-Ray Spectrosc. 18, 45 (1989). https://doi.org/10.1002/xrs.1300180203

    Article  CAS  Google Scholar 

  13. A. Paoletti, B. M. Bruni, A. Gianfagna, et al., Microsc. Microanal. 12 (5), 710 (2011). https://doi.org/10.1017/S1431927611000432

    Article  CAS  Google Scholar 

  14. N. W. M. Ritchie, Microsc. Microanal. 16 (3), 248 (2010). https://doi.org/10.1017/S1431927610000243

    Article  CAS  Google Scholar 

  15. J. Trincavelli and R. E. Van Grieken, X-Ray Spectrosc. 23, 254 (1994). https://doi.org/10.1002/xrs.1300230605

    Article  CAS  Google Scholar 

  16. J. L. Labar and S. B. A. Torok, X-Ray Spectrosc. 21, 183 (1992). https://doi.org/10.1002/xrs.1300210407

    Article  CAS  Google Scholar 

  17. P. Hovington, M. Lagace, and L. Rodrigue, Microsc. Microanal. 8 (S2), 1472 (2002). https://doi.org/10.1017.S1431927602103990

    Article  Google Scholar 

  18. J. A. Small, J. Res. Natl. Inst. Stand. Technol. 107 (6), 555 (2002).

    Article  CAS  Google Scholar 

  19. D. Drouin, A. R. Couture, D. Joly, et al., Scanning 29 (3), 92 (2007). https://doi.org/10.1002/sca.20000

    Article  CAS  Google Scholar 

  20. D. Drouin, P. Hovington, and R. Gauvin, Scanning 19 (1), 20 (1997). https://doi.org/10.1002/sca.4950190103

    Article  CAS  Google Scholar 

  21. P. Hovington, D. Drouin, and R. Gauvin, Scanning 19 (1), 1 (1997). https://doi.org/10.1002/sca.4950190101

    Article  CAS  Google Scholar 

  22. P. Hovington, D. Drouin, R. Gauvin, et al., Scanning 19 (1), 29 (1997). https://doi.org/10.1002/sca.4950190104

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to S. V. Vasil’ev, senior research associate of Valiev Institute of Physics and Technology, Yaroslavl Branch, Russian Academy of Sciences, for his assistance in the mathematical calculations.

Funding

Analytical equipment of the Center for Collective Use Diagnostics of Microstructures and Nanostructures was used in the study. The study was supported by the Ministry of Education and Science of the Russian Federation within the framework of State assignment to Valiev Institute of Physics and Technology, Russian Academy of Sciences, on topic no. 0066-2019-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Pukhov.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pukhov, D.E., Lapteva, A.A. Taking into Account the Surface Roughness in the Electron-Probe Energy-Dispersive Analysis of Powder Materials. J. Surf. Investig. 14, 889–898 (2020). https://doi.org/10.1134/S1027451020050146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020050146

Keywords:

Navigation