Skip to main content
Log in

Morphological and Optical Properties of Cu1 –xZnxO Nanoparticles

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

This paper reports on morphological and optical properties of Cu1 – xZnxO nanoparticles (x = 1 and 3 at %) synthesized by the microwave method. Undoped and Zn doped CuO nanoparticles are characterized by SEM, EDAX, UV–vis FTIR and XRD analysis. Capsule shape and Circle shape nanoparticles are observed in SEM analysis. The at % of Cu, Zn and O in nanoparticles is estimated by EDAX analysis. The presences of various chemical functional groups are confirmed by FTIR analysis. The peaks present in the range 410–430 cm–1 are assigned to the Cu–O. The bandgap value is calculated as 3.94, 3.84 and 3.82 eV for undoped and Zn doped (1 and 3 at %) CuO nanoparticles. The average crystallite size of undoped CuO nanoparticles is calculated as 17.14 nm using the Scherrer formula by XRD analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. Phiwdang, S. Suphankij, W. Mekprasart, and W. Pecharapa, Energy Procedia 34, 740 (2013).

    Article  CAS  Google Scholar 

  2. M. Verma, V. Kumar, and A. Katoch, Mater. Sci. Semicond. Process. 76, 55 (2018).

    Article  CAS  Google Scholar 

  3. J. Song, L. Xu, C. Zhou, R. Xing, Q. Dai, D. Liu, and H. Song, ACS Appl. Mater. Interfaces 5, 12928 (2013).

    Article  CAS  Google Scholar 

  4. H. Absike, M. Hajji, H. Labrim, A. Abbassi, and H. Ez-Zahraouy, Superlattices Microstruct. 127, 128 (2017) https://doi.org/10.1016/j.spmi.2017.12.038

    Article  CAS  Google Scholar 

  5. R. Arunadevi, B. Kavitha, M. Rajarajan, A.Suganthi, and A. Jeyamurugan, Surf. Interfaces, 10, 32 (2018).

    Article  CAS  Google Scholar 

  6. N. Sharma, A. Gaur, and R. K. Kotnala, J Magn. Magn. Mater. 377, 183 (2015).

    Article  CAS  Google Scholar 

  7. N. M. Basith, J. J. Vijaya, L. J. Kennedy, and M. Bououdina, Mater. Sci. Semicond. Process. 17, 110 (2014).

    Article  CAS  Google Scholar 

  8. N. M. Basith, J. J. Vijaya, L. J. Kennedy, and M. Bououdina, Phys. E (Amsterdam, Neth.) 53, 193 (2013).

  9. T. Jiang, M. Bujoli-Doeuff, E. Gautron, Y. Farré, L. Cario, Y.Pellegrin, M. Boujtita, F. Odobel, and S. Jobic, J. Alloys Compd. 769, 605 (2018).

    Article  CAS  Google Scholar 

  10. O. Lupan, V. Postica, N. Ababii, M. Hoppe, V. Cretu, I. Tiginyanu, V. Sontea, Th. Pauporté, B. Viana, and R. Adelung, Microelectron. Eng. 164, 63 (2016).

    Article  CAS  Google Scholar 

  11. S. Park, S. Kim, H. Kheel, S. K. Hyun, C. Jin, and C. Lee, Mater. Res. Bull. 82, 130 (2016).

    Article  CAS  Google Scholar 

  12. A. Pugazhendhi, S. S. Kumar, M. Manikandan, and M. Saravanan, Microb. Pathog. 122, 84 (2018).

    Article  CAS  Google Scholar 

  13. M. Nabila and K. Kannabiran, Biocatal. Agric. Biotechnol. 15, 56 (2018).

    Article  Google Scholar 

  14. H. Mersian, M. Alizadeh, and N. Hadi, Ceram. Int. 44, 20399 (2018).

    Article  CAS  Google Scholar 

  15. M. Carbone, R. Briancesco, and L. Bonadonna, Environ. Nanotechnol. Monit. Manage. 7, 97 (2017).

    Google Scholar 

  16. H. Raja Naika, K. Lingaraju, K. Manjunath, D. Kumar, G. Nagaraju, D. Suresh, and H. Nagabhushana, J. Taibah Univ. Sci. 9, 7 (2015).

    Google Scholar 

  17. A. A. Manoharan, R. Chandramohan, R. D. Prabu, S. Valanarasu, V. Ganesh, M. Shkir, A. Kathalingam, and S. AlFaify, J. Mol. Struct. 1171, 388 (2018).

    Article  Google Scholar 

  18. J. Ha, J. Oh, H. Choi, H. Ryu, W. Lee, and J. Bae, J. Ind. Eng. Chem. 58, 38 (2018).

    Article  CAS  Google Scholar 

  19. K. Deepa and T. V. Venkatesha, Mater. Proc. Today 4, 12045 (2017).

    Article  Google Scholar 

  20. E. Shahsavan, N. Feizi, and A. D. Khalaji, J. Ultrafine Grained Nanostruct. Mater. 49, 48 (2016).

    Google Scholar 

  21. J. D. Rodney, S. Deepapriya, P. A. Vinosha, S. Krishnan, et al., Optik 161, 204 (2018).

    Article  CAS  Google Scholar 

  22. S. P. Mardikar, S. Kulkarni, and P. V. Adhyapak, J. Environ. Chem. Eng. (2018). https://doi.org/10.1016/j.jece.2018.11.033

  23. S. M. Alves, V. S. Mello, E. A. Faria, and A. P. P. Camargo, Tribol. Int. 100, 263 (2016).

    Article  CAS  Google Scholar 

  24. M. Ponnar, C. Thangamani, P. Monisha, S.S. Gomathi, and K. Pushpanathan, Appl. Surf. Sci, 449, 132 (2018).

    Article  CAS  Google Scholar 

  25. K. R. Reddy, J. Mol. Struct. 1150, 553 (2017).

    Article  CAS  Google Scholar 

  26. N. Srinivasan, M. Revathi, and P. Pachamuthu, Optik 130, 422 (2017).

    Article  CAS  Google Scholar 

  27. N. Srinivasan and J. C. Kannan, Mater. Sci.-Pol. 33, 205 (2015).

    Article  CAS  Google Scholar 

  28. J. Jayaprakash, N. Srinivasan, P. Chandrasekaran, and E.K. Girija, Spectrochim. Acta A 136, 1803 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Srinivasan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, N. Morphological and Optical Properties of Cu1 –xZnxO Nanoparticles. J. Surf. Investig. 13, 1199–1202 (2019). https://doi.org/10.1134/S1027451019060508

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019060508

Keywords:

Navigation