Skip to main content
Log in

Anharmonic Interatomic Potential Parameters Determined via EXAFS Cumulant Analysis for Pt–Fe Nanoparticles in a Polymer Matrix

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Pt–Fe nanoparticles with a core–shell structure stabilized in polyethylene are studied via X-ray absorption spectroscopy. The temperature-dependent PtLIII-edge EXAFS (extended X-ray absorption fine structure) spectra of nanoparticle nuclei, consisting of platinum atoms, provide information on the interatomic-potential anharmonicity parameters along with the melting point Tmelt and the Debye temperature, which are found to be 1630 and 208 K, respectively. This is much lower than for bulk platinum, where the values are 2041.4 and 233 K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. H. Zeng, J. Li, J. P. Liu, et al., Nature 420, 395 (2002).

    Article  CAS  Google Scholar 

  2. M. Tanase, N. T. Nuhfer, D. E. Laughlin, et al., J. Magn Magn. Mater. 266, 215 (2003).

    Article  CAS  Google Scholar 

  3. B. Rellinghaus, S. Stappet, M. Acet, and E. F. Wassermann, J. Magn. Magn. Mater. 266, 142 (2003). https://doi.org/10.1016/S0304-8853(03)00465-7

    Article  CAS  Google Scholar 

  4. O. E. Gudko, T. A. Lastovina, N. V. Smirnova, and V. E. Guterman, Nanotechnol. Russia 4, 309 (2009). https://doi.org/10.1134/S1995078009050085

    Article  Google Scholar 

  5. G. Yu. Yurkov, M. I. Biryukova, Yu. A. Koksharov, et al., Perspektiv. Mater., No. 6, 51 (2013).

  6. V. G. Vlasenko, S. S. Podsukhina, A. V. Kozinkin, and Ya. V. Zubavichus, Phys. Solid State 58, 421 (2016). https://doi.org/10.1134/S1063783416020335

    Article  CAS  Google Scholar 

  7. M. Okube and A. Yoshiasa, J. Synchr. Rad 8, 937 (2001). https://doi.org/10.1107/S0909049500021051

    Article  CAS  Google Scholar 

  8. T. Yokoyama, S. Kimoto, and T. Ohta, Jpn. J. Appl. Phys. 28, 851 (1989). https://doi.org/10.1143/JJAP.28.L851

    Article  Google Scholar 

  9. T. Yokoyama and T. Ohta, Jpn. J. Appl. Phys. 29, 2052 (1990). https://doi.org/10.1143/JJAP.29.2052.L

    Article  CAS  Google Scholar 

  10. D. E. Sayers and B. Bunker, in X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES, Ed. by D. C. Koningsberger and R. N. Y. Prins (John Wiley & Sons, New York, 1988), p. 211.

    Google Scholar 

  11. J. J. Rehr, J. Mustre De Leon, S. I. Zabinsky, and R. C. Albers, J. Am. Chem. Soc. 113, 5135 (1991). https://doi.org/10.1021/ja00014a001

    Article  CAS  Google Scholar 

  12. J. J. Rehr and R. C. Albers, Phys. Rev. 41, 8139 (1991). https://doi.org/10.1103/PhysRevB.41.8139

    Article  Google Scholar 

  13. N. V. Hung, N. B. Trung, and N. B. Duc, J. Mater. Sci. Appl 1, 51 (2015).

    Google Scholar 

  14. J. Haug, A. Chassé, R. Schneider, et al., Phys. Rev. 77, 184115 (1991). https://doi.org/10.1103/PhysRevB.77.184115

    Article  CAS  Google Scholar 

  15. M. G. Newville, PhD Thesis (Washington, 1995).

  16. M. P. Malkov, I. B. Danilov, A. G. Zel’dovich, and A. B. Fradkov, Handbook of Physicotechnical Principles of Cryogenics (Energoatomizdat, Moscow, 1985) [in Russian], p. 418.

    Google Scholar 

  17. G. Guisbiers, J. Nanosci. Lett 8, 1 (2012). https://doi.org/10.1155/2012/180976

    Article  Google Scholar 

  18. S. C. Vanithakumari and K. K. Nanda, Phys. Lett. A 372, 6930 (2008). https://doi.org/10.1016/j.physleta.2008.09.050

    Article  CAS  Google Scholar 

  19. R. D. Shannon, Acta Crystallogr. A. 32, 751 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  20. S. M. Attarian, A. Safaei, S. Sanjabi, and Z. H. Barber, Solid State Commun. 145, 432 (2008). https://doi.org/10.1016/j.ssc.2007.12.021

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported within the framework of the State Task in the field of science (project no. 3.6105.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. S. Podsukhina or V. G. Vlasenko.

Additional information

Translated by O. Maslova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podsukhina, S.S., Kozinkin, A.V. & Vlasenko, V.G. Anharmonic Interatomic Potential Parameters Determined via EXAFS Cumulant Analysis for Pt–Fe Nanoparticles in a Polymer Matrix. J. Surf. Investig. 13, 914–918 (2019). https://doi.org/10.1134/S1027451019050318

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019050318

Keywords:

Navigation