Skip to main content
Log in

Thermoresponsive behaviour of terpolymers containing poly(ethylene oxide), poly(2-ethyl-2-oxazoline) and poly(ε-caprolactone) blocks in aqueous solutions: an NMR study

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

1H NMR spectroscopy was used for the first time to investigate temperature behaviour of aqueous solutions of nanoparticles (NPs) prepared from linear and Y-shape terpolymers containing blocks of poly(ethylene oxide) (PEO), poly(2-ethyl-2-oxazoline) (PEtOx) and one linear or two star poly(ε-caprolactone) (PCL) blocks with different length. Structural changes were characterized separately for all blocks in a temperature range 295–360 K, and a broad transition was observed at temperatures above ~320 K. The temperature behaviour of NPs solutions depends on polymer concentration and especially on terpolymer architecture. At the same time, NMR measurements revealed important role of PCL blocks in this behaviour. The spin-spin relaxation times T 2 of water (HDO) give information on the behaviour of water and on polymer-water interactions within the aforementioned temperature range. In NPs solutions of the linear copolymer, two types of water were detected at higher temperatures: “free” and “bound” water molecules with long and very short T 2 values, respectively. For NPs solution of non-linear terpolymer, two types of water were observed only for the highest used (1.5 wt%) polymer concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mai Y, Eisenberg A (2012) Self-assembly of block copolymers. Chem Soc Rev 41:5969–5985

    Article  CAS  Google Scholar 

  2. Schacher FH, Rupar PA, Manners I (2012) Functional block copolymers: nanostructured materials with emerging applications. Angew Chem Int Ed 51:7898–7921

    Article  CAS  Google Scholar 

  3. Petrova S, Jäger E, Konefał R, Jäger A, Venturini CG, Spěváček J, Pavlova E, Štěpánek P (2014) Novel poly(ethylene oxide monomethyl ether)-b-poly(ε-caprolactone) diblock copolymers containing a pH-acid labile ketal group as a block linkage. Polym Chem 5:3884–3893

    Article  CAS  Google Scholar 

  4. Allen C, Maysinger D, Eisenberg A (1999) Nano-engineering block copolymer aggregates for drug delivery. Colloids Surfaces B Biointerfaces 16:3–27

    Article  CAS  Google Scholar 

  5. Liu H, Xu J, Jiang J, Yin J, Narain R, Cai Y, Liu S (2007) Syntheses and micellar properties of well-defined amphiphilic AB2 and A2B Y-shaped miktoarm star copolymers of e-caprolactone and 2-(dimethylamino)ethyl methacrylate. J Polym Sci Part A-Polymer Chem 45:1446–1462

    Article  CAS  Google Scholar 

  6. Ge Z, Cai Y, Yin J, Zhu Z, Rao J, Liu S (2007) Synthesis and “schizophrenic” micellization of double hydrophilic AB4 miktoarm star and AB diblock copolymers: structure and kinetics of micellization. Langmuir 23:1114–1122

    Article  CAS  Google Scholar 

  7. Forder C, Patrickios CS, Armes SP, Billingham NC (1996) Synthesis and aqueous solution characterization of dihydrophilic block copolymers of methyl vinyl ether and methyl triethylene glycol vinyl ether. Macromolecules 29:8160–8169

    Article  CAS  Google Scholar 

  8. Wang XS, Jackson R, Armes SP (2000) Facile synthesis of acidic copolymers via atom transfer radical polymerization in aqueous media at ambient temperature. Macromolecules 33:255–257

    Article  CAS  Google Scholar 

  9. Colfen H (2001) Double-hydrophilic block copolymers: synthesis and application as novel surfactants and crystal growth modifiers. Macromol Rapid Commun 22:219–252

    Article  CAS  Google Scholar 

  10. Blanazs A, Warren NJ, Lewis AL, Armes SP, Ryan AJ (2011) Self-assembly of double hydrophilic block copolymers in concentrated aqueous solution. Soft Matter 7:6399–6403

    Article  CAS  Google Scholar 

  11. Casse O, Shkilnyy A, Linders J, Mayer C, Haussinger D, Volkel A, Thunemann AF, Dimova R, Colfen H, Meier W, Schlaad H, Taubert A (2012) Solution behavior of double-hydrophilic block copolymers in dilute aqueous solution. Macromolecules 45:4772–4777

    Article  CAS  Google Scholar 

  12. Brosnan SM, Schlaad H, Antonietti M (2015) Aqueous self-assembly of purely hydrophilic block copolymers into giant vesicles. Angew Chem Int Ed 54:975–978

    Article  Google Scholar 

  13. Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962–990

    Article  CAS  Google Scholar 

  14. Branco MC, Schneider JP (2009) Self-assembling materials for therapeutic delivery. Acta Biomater 5:817–831

    Article  CAS  Google Scholar 

  15. Harada A, Kataoka K (1998) Novel polyion complex micelles entrapping enzyme molecules in the core: preparation of narrowly-distributed micelles from lysozyme and poly(ethylene glycol)-poly(aspartic acid) block copolymer in aqueous medium. Macromolecules 31:288–294

    Article  CAS  Google Scholar 

  16. Sakai K, Smith EG, Webber GB, Baker M, Wanless EJ, Bütün V, Armes SP, Biggs S (2006) Characterizing the pH-responsive behavior of thin films of diblock copolymer micelles at the silica/aqueous solution interface. Langmuir 22:8435–8442

    Article  CAS  Google Scholar 

  17. Cao PF, Mangadlao JD, Advincula RC (2015) Stimuli-responsive polymers and their potential applications in oil-gas industry. Polym Rev 55:706–733

    Article  CAS  Google Scholar 

  18. Fujishige S, Kubota K, Ando I (1989) Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J Phys Chem 93:3311–3313

    Article  CAS  Google Scholar 

  19. Idziak I, Avoce D, Lessard D, Gravel D, Zhu XX (1999) Thermosensitivity of aqueous solutions of poly(N,N -diethylacrylamide). Macromolecules 32:1260–1263

    Article  CAS  Google Scholar 

  20. Maeda Y, Nakamura T, Ikeda I (2002) Hydration and phase behavior of poly(N-vinylcaprolactam) and poly(N-vinylpyrrolidone) in water. Macromolecules 32:217–222

    Article  Google Scholar 

  21. Han X, Zhang X, Zhu H, Yin Q, Liu HL, Hu Y (2013) Effect of composition of PDMAEMA-b-PAA block copolymers on their pH- and temperature-responsive behaviours. Langmuir 29:1024–1034

    Article  CAS  Google Scholar 

  22. Thavenesan T, Herbert C, Plamper FA (2014) Insight in the phase separation peculiarities of poly(dialkylaminoethyl methacrylate)s. Langmuir 30:5609–5619

    Article  Google Scholar 

  23. Aseyev VO, Tenhu H, Winnik FM (2006) Temperature dependence of the colloidal stability of neutral amphiphilic polymers in water. Adv Polym Sci 196:1–85

    Article  CAS  Google Scholar 

  24. Hoogenboom R, Thijs HML, Jochems MJHC, van Lankvelt BM, Fijten MVM, Schubert US (2008) Tuning the LCST of poly(2-oxazoline)s by varying composition and molecular weight: alternatives to poly(N-isopropylacrylamide)? Chem Commun:5758–5760

  25. Monduzzi M, Lampis S, Murgia S, Salis A (2014) From self-assembly fundamental knowledge to nanomedicine developments. Adv Colloid Interf Sci 205:48–67

    Article  CAS  Google Scholar 

  26. Spěváček J (2009) NMR investigations of phase transition in aqueous polymer solutions and gels. Curr Opin Colloid Interface Sci 14:184–191 and references therein

    Article  Google Scholar 

  27. Yoo MK, Jang MK, Nah JW, Park MR, Cho CS (2006) Effect of temperature on the mobility of core-shell-type nanoparticles composed of poly(γ-benzyl-L-glutamate) and poly(N-isopropylacrylamide). Macromol Chem Phys 207:528–535

    Article  CAS  Google Scholar 

  28. Hiller W, Engelhardt N, Kampmann AL, Degen P, Weberskirch R (2015) Micellization and mobility of amphiphilic poly(2-oxazoline) based block copolymers characterized by 1H NMR spectroscopy. Macromolecules 48:4032–4045

    Article  CAS  Google Scholar 

  29. Spěváček J, Hanyková L, Labuta J (2011) Behavior of water during temperature-induced phase separation in poly(vinyl methyl ether) aqueous solutions. NMR and optical microscopy study. Macromolecules 44:2149–2153

    Google Scholar 

  30. Spěváček J, Dybal J, Starovoytova L, Zhigunov A, Sedláková Z (2012) Temperature-induced phase separation and hydration in poly(N-vinylcaprolactam) aqueous solutions: a study by NMR and IR spectroscopy, SAXS, and quantum-chemical calculations. Soft Matter 8:6110–6119

    Article  Google Scholar 

  31. Ryu JG, Jeong YI, Kim IS, Lee JH, Nah JW, Kim SH (2000) Clonazepam release from core-shell type nanoparticles of poly(epsilon-caprolactone)/poly(ethylene glycol)/poly(epsilon-caprolactone) triblock copolymers. Int J Pharm 200:231–242

    Article  CAS  Google Scholar 

  32. Lin P, Clash C, Pearce EM, Kwei TK, Aponte MA (1988) Solubility and miscibility of poly(ethyl oxazoline). J Polym Sci Part B Polym Phys 26:603–619

    Article  CAS  Google Scholar 

  33. Christova D, Velichkova R, Loos W, Goethals EJ, Du Prez F (2003) New thermo-responsive polymer materials based on poly(2-ethyl-2-oxazoline) segments. Polymer 44:2255–2261

    Article  CAS  Google Scholar 

  34. Bauer M, Lautenschlaeger C, Kempe K, Tauhardt L, Schubert US, Fischer D (2012) Poly(2-ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility. Macromol Biosci 12:986–998

    Article  CAS  Google Scholar 

  35. Velander WH, Madurawe RD, Subramanian A, Kumar G, Sinai-Zingde G, Riffle JS, Orthner CL (1992) Polyoxazoline-peptide adducts that retain antibody avidity. Biotechnol Bioeng 39:1024–1030

    Article  CAS  Google Scholar 

  36. Petrova S, Venturini CG, Jäger A, Jäger E, Černoch P, Kereïche S, Kováčik L, Raška I, Štěpánek P (2015) Novel thermo-responsive double-hydrophilic and hydrophobic MPEO-b-PEtOx-b-PCL triblock terpolymers: synthesis, characterization and self-assembly studies. Polymer 59:215–225

    Article  CAS  Google Scholar 

  37. Petrova S, Venturini CG, Jäger A, Jäger E, Hrubý M, Pavlova E, Štěpánek P (2015) Supramolecular self-assembly of novel thermo-responsive double-hydrophilic and hydrophobic Y-shaped [MPEO-b-PEtOx-b-(PCL)2] terpolymers. RSC Adv 5:62844–62854

    Article  CAS  Google Scholar 

  38. Farrar TC, Becker ED (1971) Pulse and Fourier transform NMR. Academic Press pp:27–29

  39. Spěváček J, Hanyková L (2005) 1H NMR study on the hydration during temperature-induced phase separation in concentrated poly(vinyl methyl ether)/D2O solutions. Macromolecules 38:9187–9191

    Article  Google Scholar 

  40. Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 62:7512–7515

    Article  CAS  Google Scholar 

  41. Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A (2004) Poly-ϵ-caprolactone microspheres and nanospheres: an overview. Int J Pharm 278:1–23

    Article  CAS  Google Scholar 

  42. Li LY, He WD, Li J, Zhang BY, Pan TT, Sun XL, Ding ZL (2010) Shell-cross-linked micelles from PNIPAM-b-(PLL)2 Y-shaped miktoarm star copolymer as drug carriers. Biomacromolecules 11:1882–1890

    Article  CAS  Google Scholar 

  43. Yang L, Hu X, Wang W, Liu S, Sun T, Huang Y, Jing X, Xie Z (2014) Y-shaped block copolymer (methoxy-poly(ethylene glycol)2-b-poly(L-glutamic acid): preparation, self-assembly, and use as drug carriers. RSC Adv 4:41588–41596

    Article  CAS  Google Scholar 

  44. Bovey FA, Mirau PA (1996) NMR of polymers. Academic Press, San Diego, p. 16

    Google Scholar 

  45. Bovey FA (1972) High resolution NMR of macromolecules. Academic Press, New York Chapter 1

    Google Scholar 

  46. Rusu M, Wohlrab S, Kuckling D, Möhwald H, Schönhoff M (2006) Coil-to-globule transition of PNIPAM graft copolymers with charged side chains: a 1H and 2H NMR and spin-relaxation study. Macromolecules 39:7358–7363

    Article  CAS  Google Scholar 

  47. Hanyková L, Labuta J, Spěváček J (2006) NMR study of temperature-induced phase separation and polymer-solvent interactions in poly(vinyl methyl ether)/D2O/ethanol solutions. Polymer 47:6107–6116

    Article  Google Scholar 

  48. Hanyková L, Spěváček J, Ilavský M (2001) 1H NMR study of thermotropic phase transition of linear and crosslinked poly(vinyl methyl ether) in D2O. Polymer 42:8607–8612

    Article  Google Scholar 

  49. Díez-Peña E, Quijada-Garrido I, Barrales-Rienda JM, Wilhelm M, Spiess HW (2002) NMR studies of the structure and dynamics of polymers gels based on N-isopropylacrylamide (N-iPAAm) and methacrylic acid (MAA). Macromol Chem Phys 203:491–502

    Article  Google Scholar 

  50. Wang N, Ru G, Wang L, Feng J (2009) 1H MAS NMR studies of the phase separation of poly(N-isopropylacrylamide) gel in binary solvents. Langmuir 25:5898–5902

    Article  CAS  Google Scholar 

  51. Alam TM, Childress KK, Pastoor K, Rice CV (2014) Characterization of free, restricted and entrapped water environments in poly(N-isopropyl acrylamide) hydrogels via 1H HRMAS PFG NMR spectroscopy. J Polym Sci B Polym Phys 52:1521–1527

    Article  CAS  Google Scholar 

  52. Hofmann CH, Plamper FA, Scherzinger C, Hietala S, Richtering W (2013) Cononsolvency revisited: solvent entrapment by N-isopropylacrylamide and N,N-diethylacrylamide microgels in different water/methanol mixtures. Macromolecules 46:523–532

    Article  CAS  Google Scholar 

  53. Hanyková L, Spěváček J, Radecki M, Zhigunov A, Šťastná J, Valentová H, Sedláková Z (2015) Structures and interactions in collapsed hydrogels of thermoresponsive interpenetrating polymer networks. Colloid Polym Sci 293:709–720

    Article  Google Scholar 

  54. Radecki M, Spěváček J, Zhigunov A, Sedláková Z, Hanyková L (2015) Temperature-induced phase transition in hydrogels of interpenetrating networks of poly(N-isopropylacrylamide) and polyacrylamide. Eur Polym J 68:68–79

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support by the Czech Science Foundation (Project 15-13853S) is gratefully acknowledged. R.K. acknowledges Charles University, Faculty of Science (Prague, CZ) for the opportunity to pursue his PhD studies. S.P. acknowledges support from Norwegian funds no. 7F14009. Authors thank A. Sikora for DSC measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Spěváček.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konefał, R., Spěváček, J., Jäger, E. et al. Thermoresponsive behaviour of terpolymers containing poly(ethylene oxide), poly(2-ethyl-2-oxazoline) and poly(ε-caprolactone) blocks in aqueous solutions: an NMR study. Colloid Polym Sci 294, 1717–1726 (2016). https://doi.org/10.1007/s00396-016-3930-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3930-7

Keywords

Navigation