Skip to main content
Log in

Determination of the Thickness of Thin Films Based on Scanning Electron Microscopy and Energy Dispersive X-Ray Analysis

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The review is devoted to modern techniques of the nondestructive determination of the thickness of thin films based on scanning electron microscopy and energy dispersive X-ray analysis. A general approach for determining the thickness of thin films by these methods is described along with detailed specific techniques, their advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. A. S. H. Makhlouf, Nanocoatings and Ultra-Thin Films (Woodhead Publishing Limited, Cambridge, 2011), p. 159.

    Book  Google Scholar 

  2. M. Ohring, Materials Science of Thin Films. Deposition and Structure (Academic Press, San Diego, 2002), p. 704.

    Google Scholar 

  3. A. Piegari and F. Flory, Optical Thin Films and Coatings. Woodhead Publishing Series in Electronic and Optical Materials (Woodhead Publishing Limited, Cambridge, 2013), p. 835

    Google Scholar 

  4. E. V. Erofeev, I. V. Fedin, and A. I. Kazimirov, Vestn. SibGUTI 3, 29 (2015).

    Google Scholar 

  5. Yu. P. Afinogenov, E. G. Goncharov, V. N. Khoviv, et al., Vestn. Voronezh. Gos. Un-ta. Ser. Khim. Biol. Farm. 1, 11 (2004).

    Google Scholar 

  6. H. G. Tompkins and J. N. Hilfiker, Spectroscopic Ellipsometry. Practical Application to Thin Film Characterization (Momentum Press, New York, 2015), p. 178.

    Google Scholar 

  7. J. I. Goldstein, D. E. Newbury, J. R. Michael, et al., Scanning Electron Microscopy and X-Ray Microanalysis (Springer, New York, 2017) p. 381.

    Google Scholar 

  8. H. J. Fitting, J. C. Kuhr, M. Goldberg, et al., Microchim. Acta 125, 235 (1997).

    Article  CAS  Google Scholar 

  9. K. Myint, T. Barfels, J. C. Kuhr, et al., Fresenius J. Anal. Chem 361, 637 (1998).

    Article  CAS  Google Scholar 

  10. F. L. Ng, J. Wei, F. K. Lai, et al., Appl. Surf. Sci. 252, 3972 (2006).

    Article  CAS  Google Scholar 

  11. L. C. Yung and C. C. Fei, Proceed. IEEE Regional Symp. “Micro and Nanoelectronics” (Kuala Terengganu, 2015), p. 1.

    Google Scholar 

  12. K. Prong and K. Sirarat, Proceed. 13th Int. Symp. “Physical and Failure Analysis of Integrated Circuits” (Singapore, 2006), p. 200.

  13. L. Zhuang, S. Bao, R. Wang, et al., Proceed. Appl. Superconductivity and Electromagnetic Devices Int. Conf. (Chengdu, 2009), p. 142.

  14. T. B. Popova, L. A. Bakaleinikov, E. Y. Flegontova, et al., Semiconductors 45, 260 (2011).

    Article  CAS  Google Scholar 

  15. T. M. Phung, J. M. Jensen, D. C. Johnson, et al., X‑Ray Spectrometry 37, 608 (2008).

    Article  CAS  Google Scholar 

  16. M. Lulla, J. Asari, J. Aarik, et al., Microchim. Acta 155, 195 (2006).

    Article  CAS  Google Scholar 

  17. L. A. Bakaleinikov, Ya. V. Domracheva, M. V. Zamoryanskaya, et al., Fiz. Tekh. Poluprovodn. (S.-Peterburg) 43, 568 (2009).

  18. R. Rinaldi and X. Llovet, Microsc. Microanal. 21, 1053 (2015).

    Article  CAS  Google Scholar 

  19. Y. G. Lavrent’ev, V. N. Korolyuk, and L. V. Usova, J. Anal. Chem 59, 600 (2004).

    Article  Google Scholar 

  20. D. E. Newbury, Microsc. Microanal. 4, 585 (1998).

    Article  CAS  Google Scholar 

  21. K. Tsuji, K. Y. Nakano, Y. Takahashi, et al., Anal. Chem. 84, 636 (2011).

    Article  Google Scholar 

  22. J. I. Goldstein, D. E. Newbury, J. R. Michael, et al., Scanning Electron Microscopy and X-Ray microanalysis (Springer, New York, 2017), p. 289.

    Google Scholar 

  23. C. A. Anderson and M. F. Hasler, Proceed. 4th Int. Conf. on X-ray Optics and Microanalysis (Hermann, Paris, 1966), p. 310.

  24. G. F. Bastin and H. J. M. Heijligers, X-Ray Spectrom. 29, 212 (2000).

    Article  CAS  Google Scholar 

  25. G. F. Bastin and H. J. M. Heijligers, X-Ray Spectrom. 29, 373 (2000).

    Article  CAS  Google Scholar 

  26. C. S. Campos, E. A. Coleoni, J. C. Trincavelli, et al., X‑Ray Spectrom. 30, 253 (2001).

    Article  CAS  Google Scholar 

  27. M. Yasuda, S. Yamauchi, H. Kawata, and K. Murata, J. Appl. Phys. 92, 3404 (2002).

    Article  CAS  Google Scholar 

  28. J. Kuhn, V. D. Hodoroaba, S. Linke, et al., Surf. Interface Anal. 44, 1456 (2012).

    Article  Google Scholar 

  29. E. Ortel, R. Kraehnert, F. Galbert, and V. D. Hodoroaba, Microsc. Microanal. 21, 1707 (2015).

    Article  Google Scholar 

  30. S. Reed, Electron Microprobe Analysis (Mir, Moscow, 1979), p. 337 [in Russian].

  31. G. F. Bastin and H. J. M. Heijligers, Electron Probe Quantitation (Plenum Press, New York, 1991).

    Google Scholar 

  32. R. Shimizu, N. Nishigori, and K. Murata, in Proceed. 6th Int. Conf. on X-Ray Optics and Microanalysis (Tokyo, 1972), p. 95.

  33. H. J. Fitting, H. Glaefeke, and W. Wild, Phys. Stat. Sol. A 43, 185 (1977).

    Article  CAS  Google Scholar 

  34. N. N. Mikheev, M. A. Stepovich, and E. V. Shirokova, Izv. Ross. Akad. Nauk, Ser. Fiz. 74, 1043 (2010).

    CAS  Google Scholar 

  35. H. J. Fitting, Phys. Stat. Sol. A 26, 525 (1974).

    Article  CAS  Google Scholar 

  36. G. Dupouy, F. Perrier, P. Verdier, and F. Arnal, Comptes Rendus Hebd. Séances de l’Académie des Sciences 260, 6055 (1965).

    CAS  Google Scholar 

  37. A. Y. Vyatskin and V. V. Trunev, Radiotekh. Elektron. 9, 1899 (1975).

    Google Scholar 

  38. M. Gaber and H. J. Fitting, Phys. Stat. Sol. A 85, 195 (1984).

    Article  CAS  Google Scholar 

  39. R. Pascual, L. R. Cruz, C. L. Ferreira, and D. T. Gomes, Thin Solid Films 185, 279 (1990).

    Article  Google Scholar 

  40. M. Procop, M. Radtke, M. Krumrey, et al., Anal. Bioanal. Chem. 374, 631 (2002).

    Article  CAS  Google Scholar 

  41. D. A. Sewell, G. Love, and V. D. Scott, J. Phys. D: Appl. Phys. 18, 1233 (1985).

    Article  CAS  Google Scholar 

  42. D. A. Sewell, G. Love, and V. D. Scott, J. Phys. D: Appl. Phys. 18, 1245 (1985).

    Article  CAS  Google Scholar 

  43. D. A. Sewell, G. Love, and V. D. Scott, J. Phys. D: Appl. Phys. 18, 1269 (1985).

    Article  CAS  Google Scholar 

  44. D. A. Sewell, G. Love, and V. D. Scott, J. Phys. D: Appl. Phys. 20, 1567 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Sokolov.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, S.A., Milovanov, R.A. & Sidorov, L.N. Determination of the Thickness of Thin Films Based on Scanning Electron Microscopy and Energy Dispersive X-Ray Analysis. J. Surf. Investig. 13, 836–847 (2019). https://doi.org/10.1134/S1027451019050136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019050136

Keywords:

Navigation