Skip to main content
Log in

Molecular Modeling of the Post-Diffusion Stage of Surface Bio-Tissue Layers Immersion Optical Clearing

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The interaction of an immersion agent such as glycerin with collagen mimetic peptide ((GPH)9)3 and a fragment of microfibril 5((GPH)12)3 is studied by the classical molecular dynamics method using GROMACS software. The change in the geometric parameters of collagen α-chains at various concentrations of an aqueous solution of glycerin is analyzed. It is shown that these changes nonlinearly depend on the concentration and have a maximum that fit well with experimental data on the efficiency of the optical clearing of a human skin. A reason for the decrease in the efficiency of skin optical clearing at high immersion-agent concentrations is proposed. The molecular mechanism of the immersion optical clearing of biological tissues is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Hirshburg, PhD Thesis (Texas A&M Univ., College Station, TX, 2009).

    Google Scholar 

  2. Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, Ed. by V. V. Tuchin (CRC Press, 2009).

    Google Scholar 

  3. V. V. Tuchin, Optical Clearing of Tissues and Blood (SPIE Press, Bellingham, WA, 2006.).

    Google Scholar 

  4. D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, Laser Photonics Rev. 7 (5), 732 (2013). doi 10.1002/lpor.201200056

    Article  Google Scholar 

  5. E. A. Genina, A. N. Bashkatov, Yu. P. Sinichkin, I. Yu. Yanina, and V. V. Tuchin, J. Biomed. Photonics Eng. 1 (1), 22 (2015). doi 10.1002/lpor.201200056

    Article  Google Scholar 

  6. E. A. Genina, A. N. Bashkatov, V. I. Kochubey, and V. V. Tuchin, Opt. Spectrosc. 98 (3), 470 (2005).

    Article  Google Scholar 

  7. E. A. Genina, A. N. Bashkatov, Yu. P. Sinichkin, and V. V. Tuchin, Kvantovaya Elektron. 36 (12), 1119 (2006). doi 10.1070/QE2006v036n12ABEH013337

    Article  Google Scholar 

  8. E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, Adv. Opt. Technol. 2008, 267867 (2008). doi 10.1155/2008/267867

    Article  Google Scholar 

  9. A. N. Bashkatov, E. A. Genina, V. V. Tuchin, and G. B. Altshuler, Laser Phys. 19 (6), 1312 (2009). doi 10.1134/S1054660X09060231

    Article  Google Scholar 

  10. X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, Phys. Med. Biol. 54 (22), 6917 (2009). doi 10.1088/0031-9155/54/22/011

    Article  Google Scholar 

  11. N. Sudheendran, M. Mohamed, M. G. Ghosn, V. V. Tuchin, and K. V. Larin, J. Innovative Opt. Health Sci. 3 (3), 169 (2010). doi 10.1142/S1793545810001039

    Article  Google Scholar 

  12. G. V. Simonenko, E. S. Kirillova, and V. V. Tuchin, Opt. Mem. Neural Networks 18 (2), 12 (2009). doi 10.3103/S1060992X09020106

    Article  Google Scholar 

  13. D. K. Tuchina, R. Shi, A. N. Bashkatov, E. A. Genina, D. Zhu, Q. Luo, and V. V. Tuchin, J. Biophotonics 8 (4), 273 (2015). doi 10.1002/jbio.201400138

    Article  Google Scholar 

  14. X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, J. Biophotonics 3 (1–2), 44 (2010). doi 10.1002/jbio.200910080

    Google Scholar 

  15. K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, V. V. Nechaev, A. M. Likhter, I. T. Shagautdinova, E. Yu. Stepanovich, O. N. Grechukhina, and V. V. Tuchin, Proc. SPIE 10336, 103360J-1 (2017). doi 10.1117/12.2267979

    Google Scholar 

  16. K. Okuyama, K. Miyama, K. Mizuno, and H. P. Bachinger, Biopolymers 97 (8), 607 (2012). doi 10.1002/bip.22048

    Article  Google Scholar 

  17. J. M. Chen, C. E. Kung, S. H. Feairheller, and E. M. Brown, J. Protein Chem. 10 (5), 535 (1991). doi 10.1007/BF01025482

    Article  Google Scholar 

  18. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 117 (19), 5179 (1995). doi 10.1021/ja00124a002

    Article  Google Scholar 

  19. V. D. Genin, D. K. Tuchina, A. J. Sadeq, E. A. Genina, V. V. Tuchin, and A. N. Bashkatov, J. Biomed. Photonics Eng. 2 (1), 010303 (2016). doi 10.18287/JBPE16.02.010303

    Article  Google Scholar 

  20. E. Youn, T. Son, H.-S. Kim, and B. Jung, Proc. SPIE 8207, 82070J (2012). doi 10.1117/12.909790

    Google Scholar 

  21. A. D. Becke, J. Chem. Phys. 98 (7), 5648 (1993). doi 10.1063/1.464913

    Article  Google Scholar 

  22. C. Lee, W. Yangand, and R. G. Parr, Phys. Rev. B 37 (2), 785 (1988). doi 10.1103/PhysRevB.37.785

    Article  Google Scholar 

  23. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, et al., Gaussian 09, Revision A.02 (Gaussian, Pittsburgh, PA, 2009).

    Google Scholar 

  24. D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, E. A. Mark, and H. J. C. Berendsen, J. Comput. Chem. 26 (16), 1701 (2005). doi 10.1002/jcc.20291

    Article  Google Scholar 

  25. Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, et al., J. Comput. Chem. 24 (16), 1999 (2003). doi 10.1002/jcc.10349

    Article  Google Scholar 

  26. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91 (2), 6269 (1987). doi 10.1021/j100308a038

    Article  Google Scholar 

  27. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, J. Chem. Phys. 81 (8), 3884 (1984). doi 10.1063/1.448118

    Article  Google Scholar 

  28. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14 (1), 33 (1996). doi 10.1016/0263-7855(96)00018-5

    Article  Google Scholar 

  29. A. Bondi, J. Phys. Chem. 68 (3), 441 (1964). doi 10.1021/j100785a001

    Article  Google Scholar 

  30. H. D. Loof, L. Nilssonand, and R. Rigler, J. Am. Chem. Soc. 114 (11), 4028 (1992). doi 10.1021/ja00037a002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Grechukhina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvoretsky, K.N., Berezin, K.V., Chernavina, M.L. et al. Molecular Modeling of the Post-Diffusion Stage of Surface Bio-Tissue Layers Immersion Optical Clearing. J. Surf. Investig. 12, 961–967 (2018). https://doi.org/10.1134/S1027451018050233

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451018050233

Keywords

Navigation