Skip to main content
Log in

An energetic evaluation of a “Smith” collagen microfibril model

  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

An energy minimized three-dimensional structure of a collagen microfibril template was constructed based on the five-stranded model of Smith (1968), using molecular modeling methods and Kollman force fields (Weiner and Kollman, 1981). For this model, individual molecules were constructed with three identical polypeptide chains ((Gly-Pro-Pro)n, (Gly-Prop-Hyp)n, or (Gly-Ala-Ala)n, wheren=4, 12, and 16) coiled into a right-handed triple-helical structure. The axial distance between adjacent amino acid residues is about 0.29 nm per polypeptide chain, and the pitch of each chain is approximately 3.3 residues. The microfibril model consists of five parallel triple helices packed so that a left-handed superhelical twist exists. The structural characteristics of the computed microfibril are consistent with those obtained for collagen by X-ray diffraction and electron microscopy. The energy minimized Smith microfibril model for (Gly-Pro-Pro)12 has an axial length of about 10.2 nm (for a 36 amino acid residue chain), which gives an estimated D-spacing (234 amino acids per chain) of approximately 66.2 nm. Studies of the microfibril models (Gly-Pro-Pro)12, (Gly-Pro-Hyp)12, and (Gly-Ala-Ala)12 show that nonbonded van der Waals interactions are important for microfibril formation, while electrostatic interactions contribute to the stability of the microfibril structure and determine the specificity by which collagen molecules pack within the microfibril.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bear, R. (1942).J. Am. Chem. Soc. 64, 727.

    Article  CAS  Google Scholar 

  • Berg, R. A., and Prockop, D. J. (1973).Biochem. Biophys. Res. Comm. 52, 115–120.

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar, R. S., Pattabingman, N., Sorensen, K. R., Langridge, R., MacElroy, R. D., and Renugopalakrishnan V. (1982).J. Biomol. Struct. Dynam. 104, 6424–6434.

    Google Scholar 

  • Blaney, J. M., Weiner, P. K., Dearing, A., Kollman, P. A., Jorgensen, E. C., Oatley, S. J., Burridge, J. M., and Blake, C. C. F. (1982).J. Am. Chem. Soc. 104, 6424–6434.

    Article  CAS  Google Scholar 

  • Bouteille, M., and Pease, D. C. (1971).J. Ultrastruct. Res. 35, 311–338.

    Article  Google Scholar 

  • Brodsky, B., and Eikenberry, E. (1985). InAnnals of the New York Academy of Science: Biology, Chemistry and Pathology of Collagen, Vol. 460 (Fleischmajer, R., Olsen, B. R., Kuhn, K., eds.), The New York Academy of Sciences, New York, pp. 73–85.

    Google Scholar 

  • Brodsky, B., Eikenberry, E. F., Belbruno, K., and Sterling, K. (1982).Biopolymers 21, 935–951.

    Article  CAS  PubMed  Google Scholar 

  • Capaldi, M. J., and Chapman, J. A. (1982).Biopolymers 21, 2291–2313.

    Article  CAS  PubMed  Google Scholar 

  • Chapman, J. A. (1984). InConnective Tissues Matrix: Topics in Molecular and Structural Biology, Vol. 5 (Hukins, D. W. L., ed.), Verlag Chemie Weinheim, pp. 89–132.

    Google Scholar 

  • Chapman, J. A., and Hulmes, D. J. S. (1984). InUltrastructure of the Connective Tissue Matrix (Ruggeri, A., Motta, P. M., eds.), Martinus Nijihoff Publishers, Boston, pp. 1–33.

    Google Scholar 

  • Chew, M. W. K., and Squire, J. M. (1986).J. Biol. Macromol. 8, 27–36.

    Article  CAS  Google Scholar 

  • Eikenberry, E. F., and Brodsky, B. (1980).J. Mol. Biol. 144, 397–404.

    Article  CAS  PubMed  Google Scholar 

  • Fietzek, P. P., and Kuhn, K. (1976). InInternational Review of Connective Tissue Research, Vol. 7 (Hall, D., and Jackson, D. S., eds.), Academic Press, New York, pp. 1–60.

    Google Scholar 

  • Fraser, R. D. B., MacRae, T. P., and Miller, A. (1987).J. Mol. Biol. 193, 115–125.

    Article  CAS  PubMed  Google Scholar 

  • Fraser, R. D. B., MacRae, T. P., Miller, A., and Suzuki, E. (1983).J. Mol. Biol. 167, 497–521.

    Article  CAS  PubMed  Google Scholar 

  • Fraser, R. D. B., Miller, A., and Parry, D. A. D. (1974).J. Mol. Biol. 83, 281–283.

    Article  CAS  PubMed  Google Scholar 

  • Galloway, J. (1984).TIBS 9, 233–238.

    Google Scholar 

  • Giraud-Guille, M.-M. (1987).Mol. Cryst. Liq. Cryst. 153, 15–30.

    CAS  Google Scholar 

  • Gordon, M. K., Gerecke, D. R., Dublet, B., Van Der Rest, M., Sugrue, S. P., and Olsen, B. R. (1990). InAnnals of the New York Academy of Science: Structure, Molecular Biology and Pathology of Collagen, Vol. 580 (Fleischmajer, R., Olsen, B. R., Kuhn, K., eds.), The New York Academy of Sciences, New York, pp. 8–16.

    Google Scholar 

  • Helseth, Jr., D. L., Lechner, J. H., and Veis, A. (1979).Biopolymers 18, 3005–3014.

    Article  CAS  Google Scholar 

  • Hodge, A. J., and Petruska, A. J. (1963). InAspects of Protein Structure (Ramachandran, G. N., ed.), Academic Press, London, pp. 289–300.

    Google Scholar 

  • Hofmann, H., Fietzek, P. P., and Kuhn, K. (1978).J. Mol. Biol. 125, 137–165.

    Article  CAS  PubMed  Google Scholar 

  • Hosemann, R., Dressig, W., and Nemetschek, Th. (1974).J. Mol. Biol. 83, 275–280.

    Article  CAS  PubMed  Google Scholar 

  • Hulmes, D. J. S., Holmes, D. F., and Cummings, C. (1985).J. Mol. Biol. 183, 473–477.

    Article  Google Scholar 

  • Hulmes, D. J. S., Jesior, J.-C., Miller, A., Berthet-Colominas, C., and Wolff, C. (1981).Proc. Natl. Acad. Sci. USA 78, 3567–3571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulmes, D. J. S., and Miller, A. (1979).Nature 282, 878–880.

    Article  CAS  PubMed  Google Scholar 

  • Hulmes, D. J. S., and Miller, A. (1981).Nature 293, 239–240.

    Article  CAS  PubMed  Google Scholar 

  • Jelinski, L. W., Sullivan, C. E., and Torchia, D. A. (1980).Nature 284, 531–534.

    Article  CAS  PubMed  Google Scholar 

  • Kranck, H., Bernengo, J. C., and Vasilescu, D. (1982).Appl. Phys. Commun. 2, 189–202.

    Google Scholar 

  • Lee, D. D., and Glimcher, M. J. (1991).J. Mol. Biol. 217, 487–501.

    Article  CAS  PubMed  Google Scholar 

  • Lees, S., Pineri, M., and Escoubes, M. (1984).Int. J. Biol. Macromol. 6, 133–136.

    Article  CAS  Google Scholar 

  • Martin, G. R., Timpl, R., Muller, P. K., and Kuhn, K. (1985).TIBS 10, 285–287.

    CAS  Google Scholar 

  • Meek, K. M., Chapman, J. A., and Hardcastle, R. A. (1979).J. Biol. Chem. 254, 10,710–10,714.

    Article  CAS  Google Scholar 

  • Miller, A. (1982).TIBS 7, 13–18.

    Google Scholar 

  • Miller, A. (1976). InBiochemistry of Collagen (Ramachandran, G. N., and Reddi, A. H., eds.), Plenum Press, New York, pp. 85–136.

    Chapter  Google Scholar 

  • Miller, A., and Parry, D. A. D. (1973).J. Mol. Biol. 75, 441–447.

    Article  CAS  PubMed  Google Scholar 

  • Miller, A., and Wray, J. S. (1971).Nature 230, 437–439.

    Article  CAS  PubMed  Google Scholar 

  • Miller, E. J. (1985). InAnnals of the New York Academy of Sciences: Biology, Chemistry and Collagen, Vol. 460 (Fleischmajer, R., Olsen, B. R., and Kuhn, K., eds.), The New Academy of Sciences, New York, pp. 1–13.

    Google Scholar 

  • Miller, M. H., Nemethy, G., and Scheraga, H. A. (1980).Macromol. 13, 470–478.

    Article  CAS  Google Scholar 

  • Miller, M. H., and Scheraga, H. A. (1976).J. Polymer Sci. Symp. 54, 171–200.

    CAS  Google Scholar 

  • Na, G. C., Butz, L. J., and Carroll, R. J. (1986a).J. Biol. Chem. 261, 12,290–12,299.

    Article  CAS  Google Scholar 

  • Na, G. C., Butz, L. J., Bailey, D. G., and Carroll, R. J. (1986b).Biochemistry 25, 958–966.

    Article  CAS  PubMed  Google Scholar 

  • Nemethy, G., and Scheraga, H. A. (1989).Bull. Inst. Chem. Res. 66, 398–408.

    CAS  Google Scholar 

  • Nemethy, G., and Scheraga, H. A. (1984).Biopolymers 23, 2781–2799.

    Article  CAS  PubMed  Google Scholar 

  • Nemethy, G., and Scheraga, H. A. (1986).Biochemistry 25, 3184–3188.

    Article  CAS  PubMed  Google Scholar 

  • Okuyama, K., Arnott, S., Takayanagi, M., and Kakudo, M. (1981).J. Mol. Biol. 152, 427–443.

    Article  CAS  PubMed  Google Scholar 

  • Okuyama, K., Nobuhiro, G., and Takayanagi, M. (1978).Chem. Lett. 509–512.

  • Okuyama, K., Tanaka, N., Ashida, T., Kakudo, M., Sakakibara, S., and Kishida, Y. (1972).J. Mol. Biol. 72, 571–576.

    Article  CAS  PubMed  Google Scholar 

  • Olsen, B. R., Berg, R. A., Sakakibara, S., Kishida, Y., and Prockop, D. J. (1971).J. Mol. Biol. 57, 589–595.

    Article  CAS  PubMed  Google Scholar 

  • Parry, D. A. D., and Craig, A. S. (1979).Nature 282, 213–215.

    Article  CAS  PubMed  Google Scholar 

  • Piez, K. A. (1984). InExtracellular Matrix Biochemistry (Piez, K. A., and Reddi, A. H. eds.), Elsevier, New York, pp. 1–39.

    Google Scholar 

  • Piez, K. A., and Trus, B. L. (1981).Biosci. Rep. 1, 801–810.

    Article  CAS  PubMed  Google Scholar 

  • Piez, K. A., and Trus, B. L. (1977).J. Mol. Biol. 110, 701–704.

    Article  CAS  PubMed  Google Scholar 

  • Piez, K. A., and Trus, B. L. (1978).J. Mol. Biol. 122, 419–432.

    Article  CAS  PubMed  Google Scholar 

  • Prockop, D. J. (1990).J. Biol. Chem. 265, 15,349–15,352.

    Article  CAS  Google Scholar 

  • Ramachandran, G. N., and Ramakrishnan, C. (1976). InBiochemistry of Collagen (Ramachandran, G. N., ed.) Plenum Press, New York, pp. 45–84.

    Chapter  Google Scholar 

  • Rich, A., and Crick, F. H. C. (1961).J. Mol. Biol. 3, 483–506.

    Article  CAS  PubMed  Google Scholar 

  • Rich, A., and Crick, F. H. C. (1955).Nature 176, 915–916.

    Article  CAS  PubMed  Google Scholar 

  • Ripamonti, A., Roveri, N., Braga, D., Hulmes, D. J. S., Miller, A., and Timmins, P. A. (1980).Biopolymers 19, 965–975.

    Article  CAS  PubMed  Google Scholar 

  • Sakaibara, S., Kishida, Y., Okuyama, K., Tanaka, N., Ashida, T., and Kakudo, M. (1972).J. Mol. Biol. 65, 371–373.

    Article  Google Scholar 

  • Scheraga, H. A. (1984).Carlsberg Res. Commun. 49, 1–55.

    Article  CAS  Google Scholar 

  • Schmitt, F. O., and Gross, J. (1948).J. Am. Leather Chem. Assoc. 43, 658–675.

    CAS  Google Scholar 

  • Smith, J. W. (1968).Nature 219, 157–158.

    Article  CAS  PubMed  Google Scholar 

  • Squire, J. M., and Freundlich, A. (1980).Nature 288, 410–413.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, E., Fraser, R. D. B., and MacRae, T. P. (1980).Int. J. Biol. Macromol. 2, 54–56.

    Article  CAS  Google Scholar 

  • SYBYL MENDYL, (1990).Macromolecular Modeling Software, version 5.32, TRIPOS Associates, Inc.

  • Torbet, J., and Ronziere, M. C. (1984).Biochem. J. 219, 1057–1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torchia, D. A., Hiyama, Y., Sarkar, S. E., and Sullivan, C. E. (1985).Biopolymers 24, 65–75.

    Article  CAS  Google Scholar 

  • Torchia, D. A., and Vanderhart, D. L., (1976).J. Mol. Biol. 104, 315–321.

    Article  CAS  PubMed  Google Scholar 

  • Traub, W. (1978).FEBS Lett. 92, 114–120.

    Article  CAS  Google Scholar 

  • Trus, B. L., and Piez, K. A. (1976).J. Mol. Biol. 108, 705–732.

    Article  CAS  PubMed  Google Scholar 

  • Umemura, S., Sakamoto, M., Hayakawa, R., and Wada, Y. (1979).Biopolymers 18, 25–34.

    Article  CAS  Google Scholar 

  • Veis, A., Miller, A., Leibovich, S. J., and Traub, W. (1979).Biochim. Biophys. Acta 576, 88–98.

    Article  CAS  PubMed  Google Scholar 

  • Veis, A., and Yuan, L. (1975).Biopolymers 14, 895–900.

    Article  CAS  Google Scholar 

  • Weiner, P. K., and Kollman, P. A. (1981).J. Comp. Chem. 2, 287–303.

    Article  CAS  Google Scholar 

  • Weiner, S. J., Kollman, P. A., Case D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S., and Weiner, P. A. (1984).J. Am. Chem. Soc. 106, 765–784.

    Article  CAS  Google Scholar 

  • Woodhead-Galloway, J. (1984). InConnective Tissue Matrix: topics in Molecular and Structural Biology, Vol. 5 (Hukins, D. W. L., ed.) Verlag Chemie, Weinheim, pp. 133–160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J.M., Kung, C.E., Feairheller, S.H. et al. An energetic evaluation of a “Smith” collagen microfibril model. J Protein Chem 10, 535–552 (1991). https://doi.org/10.1007/BF01025482

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01025482

Key words

Navigation