Morphology and Structure of a Fine-Grained Composite Material Based on Boehmite Extracted from Aqueous Solutions of Na-Carboxymethyl Cellulose with Aluminum Powder

  • N. M. AntonovaEmail author
  • F. M. Boldyrev
  • I. Y. Zabiyaka


Fine-grained composite material is synthesized from aluminum powder in aqueous solutions of Na-sodium carboxymethyl cellulose. The phase composition of the composite material is determined using X-ray phase analysis and infrared spectroscopy. Aluminum oxyhydroxide (boehmite) stabilized by the polymer material Na-sodium carboxymethyl cellulose is found to be formed during synthesis. The interaction between boehmite and the polymer material is implemented due to intermolecular hydrogen bonds. The formation of 600-nm spherical particles with porous surfaces is revealed by scanning electron microscopy. Unlike traditional methods of producing boehmite at 200–400°С, synthesis occurs at 70–80°С. The prospects of using boehmite for the creation of porous functional materials are shown.


porous composite fine-grained boehmite aluminum powder sodium carboxymethyl cellulose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. J. Hato, T. E. Motaung, S. V. Motloung, and L. F. Koao, J. Reinf. Plast. Compos. 35 (15), 1191 (2016).CrossRefGoogle Scholar
  2. 2.
    B. Tahmasbi and P. Morad, RSC Adv. 6 (49), 43205 (2016).CrossRefGoogle Scholar
  3. 3.
    L. Zhang, Y. He, Sh. Feng, et al., Ceram. Int. 42 (5), 6178 (2016).CrossRefGoogle Scholar
  4. 4.
    T. Sun, Q. Zhuo, Y. Chen, and Z. Wu, High Perform. Polym. 27 (1), 100 (2015).CrossRefGoogle Scholar
  5. 5.
    S. V. Mal’tseva, I. P. Mel’nikova, A. V. Lyasnikova, and A. M. Zaharevich, Mech. Compos. Mater. 52 (4), 531 (2016).CrossRefGoogle Scholar
  6. 6.
    P. A. Vityaz’, A. F. Il’yushchenko, L. V. Sudnik, et al., Functional Materials on the Base of Aluminum Hydroxide Nanostructured Powders (Belaruskaya Navuka, Minsk, 2010) [in Russian].Google Scholar
  7. 7.
    G. L. Teoh, K. Y. Liew, and A. K. M. Wan, J. Sol-Gel Sci. Technol. 44, 176 (2007).CrossRefGoogle Scholar
  8. 8.
    A. S. Lozhkomoev, E. A. Glazkova, S. O. Kazantsev, et al., Nanotechnol. Russ. 10 (11), 858 (2015).CrossRefGoogle Scholar
  9. 9.
    G. P. Panasyuk, I. V. Kozerozhets, I. L. Voroshilov, et al., Russ. J. Phys. Chem. A 89 (4), 592 (2015).CrossRefGoogle Scholar
  10. 10.
    N. V. Svarovskaya, O. V. Bakina, E. A. Glazkova, et al., Russ. J. Phys. Chem. A 84 (9), 1566 (2010).CrossRefGoogle Scholar
  11. 11.
    A. P. Il’in, A. V. Korshunov, and L. O. Tolbanova, Izv. Tomsk. Politekh. Univ. 311 (4), 10 (2007).Google Scholar
  12. 12.
    N. M. Antonova, Doctoral Dissertation in Engineering (M. I. Platov South-Russian State Polytechnic Univ. (NPI), 2016).Google Scholar
  13. 13.
    Petropavlovskii, G.A., Hydrophilic Partially Substituted Cellulose Esters (Nauka, Leningrad, 1988) [in Russian].Google Scholar
  14. 14.
    P. Scherrer, Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl. 26, 98 (1918).Google Scholar
  15. 15.
    G. C. Pimentel and A. L. McClellan, The Hydrogen Bond (W. H. Freeman, San Francisco, CA, 1960).Google Scholar
  16. 16.
    N. A. Tomil’tseva, A. A. Sevodina, and V. V. Budaeva, Polzunovskii Vestn., No. 4, 224 (2010).Google Scholar
  17. 17.
    J. Böcker, Spektroskopie: Instrumentelle Analytik mit Atom-und Molekülspektrometrie (Vogel Business Media, 1997).Google Scholar
  18. 18.
    L. J. Bellamy, The Infrared Spectra of Complex Molecules (John Wiley and Sons, New York, 1958).Google Scholar
  19. 19.
    N. G. Bazarnova, Methods for Researching Wood and its Derivatives. Student’s Book (Altai State Univ., Barnaul, 2002) [in Russian].Google Scholar
  20. 20.
    G. D. Chukin, Structure of Aluminum Oxide Catalysators for Hydrodesulfurization. Reaction Mechanisms (PRINTA, Moscow, 2010) [in Russian].Google Scholar
  21. 21.
    J. B. Peri and R. B. Hannan, J. Phys. Chem. 64 (10), 1526 (1960).CrossRefGoogle Scholar
  22. 22.
    M. V. Shablygin, Fibre Chem. 38 (6), 499 (2006).CrossRefGoogle Scholar
  23. 23.
    M. V. Shablygin and A. P. Ivanov, Fibre Chem. 37 (2), 109 (2005).CrossRefGoogle Scholar
  24. 24.
    M. V. Shablygin, T. S. Mamonova, I. V. Slygin, and L. A. Novikova, Fibre Chem. 41 (4), 245 (2009).Google Scholar
  25. 25.
    T. E. Sukhanova, S. V. Valueva, M. E. Vylegzhanina, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8 (3), 484 (2014).CrossRefGoogle Scholar
  26. 26.
    N. M. Antonova, A. P. Babichev, B. G. Gasanov, and S. N. Egorov, Uprochnyayushchie Tekhnol. Pokrytiya 13 (3/147), 139 (2017).Google Scholar
  27. 27.
    N. M. Antonova, A. P. Babichev, and V. S. Berezovsky, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11 (5), 955 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. M. Antonova
    • 1
    Email author
  • F. M. Boldyrev
    • 1
  • I. Y. Zabiyaka
    • 2
  1. 1.Kamensky InstitutePlatov South-Russian State Polytechnic UniversityKamensk-Shakhtinsky, Rostov oblastRussia
  2. 2.Don State Technical UniversityRostov-on-DonRussia

Personalised recommendations