Skip to main content
Log in

Morphology and Structure of a Fine-Grained Composite Material Based on Boehmite Extracted from Aqueous Solutions of Na-Carboxymethyl Cellulose with Aluminum Powder

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Fine-grained composite material is synthesized from aluminum powder in aqueous solutions of Na-sodium carboxymethyl cellulose. The phase composition of the composite material is determined using X-ray phase analysis and infrared spectroscopy. Aluminum oxyhydroxide (boehmite) stabilized by the polymer material Na-sodium carboxymethyl cellulose is found to be formed during synthesis. The interaction between boehmite and the polymer material is implemented due to intermolecular hydrogen bonds. The formation of 600-nm spherical particles with porous surfaces is revealed by scanning electron microscopy. Unlike traditional methods of producing boehmite at 200–400°С, synthesis occurs at 70–80°С. The prospects of using boehmite for the creation of porous functional materials are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Hato, T. E. Motaung, S. V. Motloung, and L. F. Koao, J. Reinf. Plast. Compos. 35 (15), 1191 (2016).

    Article  Google Scholar 

  2. B. Tahmasbi and P. Morad, RSC Adv. 6 (49), 43205 (2016).

    Article  Google Scholar 

  3. L. Zhang, Y. He, Sh. Feng, et al., Ceram. Int. 42 (5), 6178 (2016).

    Article  Google Scholar 

  4. T. Sun, Q. Zhuo, Y. Chen, and Z. Wu, High Perform. Polym. 27 (1), 100 (2015).

    Article  Google Scholar 

  5. S. V. Mal’tseva, I. P. Mel’nikova, A. V. Lyasnikova, and A. M. Zaharevich, Mech. Compos. Mater. 52 (4), 531 (2016).

    Article  Google Scholar 

  6. P. A. Vityaz’, A. F. Il’yushchenko, L. V. Sudnik, et al., Functional Materials on the Base of Aluminum Hydroxide Nanostructured Powders (Belaruskaya Navuka, Minsk, 2010) [in Russian].

    Google Scholar 

  7. G. L. Teoh, K. Y. Liew, and A. K. M. Wan, J. Sol-Gel Sci. Technol. 44, 176 (2007).

    Article  Google Scholar 

  8. A. S. Lozhkomoev, E. A. Glazkova, S. O. Kazantsev, et al., Nanotechnol. Russ. 10 (11), 858 (2015).

    Article  Google Scholar 

  9. G. P. Panasyuk, I. V. Kozerozhets, I. L. Voroshilov, et al., Russ. J. Phys. Chem. A 89 (4), 592 (2015).

    Article  Google Scholar 

  10. N. V. Svarovskaya, O. V. Bakina, E. A. Glazkova, et al., Russ. J. Phys. Chem. A 84 (9), 1566 (2010).

    Article  Google Scholar 

  11. A. P. Il’in, A. V. Korshunov, and L. O. Tolbanova, Izv. Tomsk. Politekh. Univ. 311 (4), 10 (2007).

    Google Scholar 

  12. N. M. Antonova, Doctoral Dissertation in Engineering (M. I. Platov South-Russian State Polytechnic Univ. (NPI), 2016).

    Google Scholar 

  13. Petropavlovskii, G.A., Hydrophilic Partially Substituted Cellulose Esters (Nauka, Leningrad, 1988) [in Russian].

    Google Scholar 

  14. P. Scherrer, Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl. 26, 98 (1918).

    Google Scholar 

  15. G. C. Pimentel and A. L. McClellan, The Hydrogen Bond (W. H. Freeman, San Francisco, CA, 1960).

    Google Scholar 

  16. N. A. Tomil’tseva, A. A. Sevodina, and V. V. Budaeva, Polzunovskii Vestn., No. 4, 224 (2010).

    Google Scholar 

  17. J. Böcker, Spektroskopie: Instrumentelle Analytik mit Atom-und Molekülspektrometrie (Vogel Business Media, 1997).

    Google Scholar 

  18. L. J. Bellamy, The Infrared Spectra of Complex Molecules (John Wiley and Sons, New York, 1958).

    Google Scholar 

  19. N. G. Bazarnova, Methods for Researching Wood and its Derivatives. Student’s Book (Altai State Univ., Barnaul, 2002) [in Russian].

    Google Scholar 

  20. G. D. Chukin, Structure of Aluminum Oxide Catalysators for Hydrodesulfurization. Reaction Mechanisms (PRINTA, Moscow, 2010) [in Russian].

    Google Scholar 

  21. J. B. Peri and R. B. Hannan, J. Phys. Chem. 64 (10), 1526 (1960).

    Article  Google Scholar 

  22. M. V. Shablygin, Fibre Chem. 38 (6), 499 (2006).

    Article  Google Scholar 

  23. M. V. Shablygin and A. P. Ivanov, Fibre Chem. 37 (2), 109 (2005).

    Article  Google Scholar 

  24. M. V. Shablygin, T. S. Mamonova, I. V. Slygin, and L. A. Novikova, Fibre Chem. 41 (4), 245 (2009).

    Google Scholar 

  25. T. E. Sukhanova, S. V. Valueva, M. E. Vylegzhanina, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8 (3), 484 (2014).

    Article  Google Scholar 

  26. N. M. Antonova, A. P. Babichev, B. G. Gasanov, and S. N. Egorov, Uprochnyayushchie Tekhnol. Pokrytiya 13 (3/147), 139 (2017).

    Google Scholar 

  27. N. M. Antonova, A. P. Babichev, and V. S. Berezovsky, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11 (5), 955 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Antonova.

Additional information

Original Russian Text © N.M. Antonova, F.M. Boldyrev, I.Y. Zabiyaka, 2018, published in Poverkhnost’, 2018, No. 10, pp. 37–44.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonova, N.M., Boldyrev, F.M. & Zabiyaka, I.Y. Morphology and Structure of a Fine-Grained Composite Material Based on Boehmite Extracted from Aqueous Solutions of Na-Carboxymethyl Cellulose with Aluminum Powder. J. Surf. Investig. 12, 974–981 (2018). https://doi.org/10.1134/S102745101805021X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745101805021X

Keywords

Navigation