Skip to main content
Log in

Graphitization of a Polycrystalline Diamond under High-Fluence Irradiation with Noble Gas and Nitrogen Ions

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

To analyze the process of the ion-induced graphitization of a polycrystalline diamond, the surfacelayer conductivity and microstructure are studied experimentally after high-fluence irradiation with Ne+, Ar+, N+, and ions with energies of 20–30 keV at irradiation and heat-treatment temperatures ranging from 30 to 720°R in vacuum. After irradiation with argon ions at room temperature and subsequent heat treatment, the resistivity ϱ of a modified layer decreases exponentially with increasing treatment temperature T ht and reaches the graphite value ϱ at Tht = 700°R. Such a temperature T ht is insufficient for surface-layer graphitization by nitrogen ions. The increase in the diamond temperature under irradiation leads to a decrease in the ion-induced thermal graphitization temperature T g by several hundred degrees. It is found that the temperature T g is almost coincident with the corresponding temperature Ta of the dynamic annealing of radiation-induced damage in graphite. Analysis of the irradiated layer using Raman spectroscopy reveals the heterogeneous structure of the modified layer containing graphite and amorphous phases, the ratio between which correlates with the layer resistivity. Under argon-ion irradiation at diamond temperatures of 500°R or more, an increase in ϱ of the irradiated layer is observed, which is related to the formation of nanocrystalline graphite. This effect is not observed under nitrogen-ion irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Prins, Mater. Sci. Rep. 7, 271 (1992). doi 10.1016/0920-2307(92)90001-H

    Article  Google Scholar 

  2. R. Kalish, Semicond. Semimetals 76, 145 (2003). doi 10.1016/S0080-8784(03)80005-4

    Article  Google Scholar 

  3. J. F. Prins and T. E. Derry, Nucl. Instrum. Methods Phys. Res., Sect. B 166–167, 364 (2000). doi 10.1016/S0168-583X(99)01190-8

    Article  Google Scholar 

  4. P. Olivero, S. Rubanov, P. Reichart, et al., Diamond Relat. Mater. 15, 1614 (2006). doi 10.1016/j.diamond.2006.01.018

    Article  Google Scholar 

  5. V. P. Popov, L. N. Safronov, O. V. Naumova, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 282, 100 (2012). doi 10.1016/j.nimb.2011.08.050

    Article  Google Scholar 

  6. P. Philipp, L. Bischoff, U. Treske, et al., Carbon 80, 677 (2014). doi 10.1016/j.carbon.2014.09.012

    Article  Google Scholar 

  7. S. Rubanov, A. Suvorova, V. P. Popov, et al., Diamond Relat. Mater. 63, 143 (2016). doi 10.1016/j.diamond.2015.11.017

    Article  Google Scholar 

  8. N. N. Andrianova, A. M. Borisov, V. A. Kazakov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9, 346 (2015). doi 10.1134/S1027451015020251

    Article  Google Scholar 

  9. N. N. Andrianova, A. M. Borisov, V. A. Kazakov, et al., Bull. Russ. Acad. Sci.: Phys. 80 (2), 156 (2016). doi 10.3103/S1062873816020040

    Article  Google Scholar 

  10. V. A. Anikin, A. M. Borisov, V. A. Kazakov, et al., J. Phys.: Conf. Ser. 747, 012025 (2016). doi 10.1088/1742-6596/747/1/012025

    Google Scholar 

  11. V. G. Nagornyi, A. S. Kotosonov, B. S. Ostrovskii, et al., Properties of Carbon-Based Structure Materials. Handbook, Ed. by V. P. Sosedov (Metallurgiya, Moscow, 1975) [in Russian].

  12. A. M. Borisov, V. A. Kazakov, E. S. Mashkova, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 356, 100 (2017). doi 10.1016/j.nimb.2017.01.075

    Google Scholar 

  13. http://www.cvd-diamond.ru.

  14. E. S. Mashkova and V. A. Molchanov, Medium-Energy Ion Reflection from Solids (North-Holland Physics Publ., Amsterdam, 1985).

    Google Scholar 

  15. P. Ehrhart, W. Schilling, and H. Ullmaier, Encycl. Appl. Phys. 15, 429 (1996).

    Google Scholar 

  16. J. F. Ziegler and J. P. Biersack, SRIM-2013. http://www.srim.org.

  17. N. N. Andrianova and A. M. Borisov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2 (2), 189 (2008). doi 10.1134/S1027451008020055

    Article  Google Scholar 

  18. V. S. Avilkina, N. N. Andrianova, A. M. Borisov, and E. S. Mashkova, Bull. Russ. Acad. Sci.: Phys. 76 (5), 520 (2012). doi 10.3103/S106287381205005X

    Article  Google Scholar 

  19. N. N. Andrianova, A. M. Borisov, E. S. Mashkova, and Yu. S. Virgiliev, Nucl. Instrum. Methods Phys. Res., Sect. B 315, 240 (2013). doi 10.1016/j.nimb.2013.04.011

    Article  Google Scholar 

  20. A. M. Borisov, Yu. S. Virgil’ev, and E. S. Mashkova, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2 (1), 52 (2008). doi 10.1134/S1027451008010096

    Google Scholar 

  21. P. A. Platonov, I. F. Novobratskaya, Yu. P. Tumanov, et al., Radiat. Eff. 54, 91 (1981).

    Article  Google Scholar 

  22. R. A. Khmelnitsky and A. A. Gippius, Phase Transitions 87, 175 (2014).

    Article  Google Scholar 

  23. V. L. Kuznetsov, Yu. V. Butenko, A. L. Chuvilin, et al., Chem. Phys. Lett. 336, 397 (2001).

    Article  Google Scholar 

  24. S. Sato, H. Watanabe, K. Takahashi, Y. Abe, and M. Iwaki, Nucl. Instrum. Methods Phys. Res., Sect. B 59–60, 1391 (1991). doi 10.1016/0168-583X(91)95838-5

    Google Scholar 

  25. N. N. Andrianova, V. S. Avilkina, A. M. Borisov, E. S. Mashkova, and E. S. Parilis, Vacuum 86, 1630 (2012). doi 10.1016/j.vacuum.2011.12.010

    Article  Google Scholar 

  26. S. Sato, H. Watanabe, K. Takahashi, and M. Iwaki, Radiat. Eff. Defects Solids 134, 43 (1992).

    Article  Google Scholar 

  27. S. Prawer and R. Kalish, Phys. Rev. B 51, 15711 (1995).

    Article  Google Scholar 

  28. F. F. Komarov, Ion Implantation into Metals (Metallurgiya, Moscow, 1990) [in Russian].

    Google Scholar 

  29. R. S. Nelson, J. A. Hudson, D. J. Mazey, and R. C. Piller, Proc. R. Soc. London, Ser. A 386, 211 (1983).

    Article  Google Scholar 

  30. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Borisov.

Additional information

Original Russian Text © V.A. Anikin, A.M. Borisov, V.A. Kazakov, E.S. Mashkova, A.I. Morkovkin, M.A. Ovchinnikov, 2017, published in Poverkhnost’, 2017, No. 12, pp. 18–25.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikin, V.A., Borisov, A.M., Kazakov, V.A. et al. Graphitization of a Polycrystalline Diamond under High-Fluence Irradiation with Noble Gas and Nitrogen Ions. J. Surf. Investig. 11, 1185–1191 (2017). https://doi.org/10.1134/S102745101706026X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745101706026X

Keywords

Navigation