Skip to main content
Log in

Surface morphology and electrocatalytic properties of nickel nanoparticles formed in track pores

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Structures, each of which is composed of a conducting substrate with a protective dielectric layer containing an array of equal-sized pores formed under the action of high-energy ions and chemical etching, are created. The created pores are electrochemically filled with nickel nanoparticles. With atomic-force microscopy (AFM), it is established that Ni nanoparticles are generated exclusively within ion tracks without film formation on the surface of a silicon-dioxide layer. Histograms illustrating the nanoparticle-diameter distribution are constructed, and areas of the nickel nanoparticles are calculated. The electrochemical and electrocatalytic properties of Ni nanoparticles inherent to ethanol-oxidation reactions are investigated. The catalytic activity per unit area of the nanocatalyst is estimated using voltammograms, AFM data, and histograms characterizing the particle size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Altavilla and E. Ciliberto, Inorganic Nanoparticles: Synthesis, Applications, and Perspectives (CRC Press, 2010).

    Google Scholar 

  2. V. I. Bukhtiyarov and M. G. Slin’ko, Usp. Khim. 70, 168 (2001).

    Article  Google Scholar 

  3. S. P. Gubin, Yu. A. Koksharov, and G. B. Khomutov, Usp. Khim. 74 (6), 539 (2005).

    Article  Google Scholar 

  4. J. W. Lau and J. Shaw, J. Phys. D: Appl. Phys. 44, 303001 (2011).

    Article  Google Scholar 

  5. M. Arruebo, R. Fernandez-Pacheco, M. R. Ibarra, and J. Santamaria, Nanotoday 22, 22 (2007).

    Article  Google Scholar 

  6. R. L. Fleischer, P. B. Price, and R. M. Walker, Nuclear Tracks in Solids: Principles and Applications (Univ. California Press, 1975).

    Google Scholar 

  7. D. Fink and R. Klett, Brazilian J. Phys. 25 (1), 54 (1995).

    Google Scholar 

  8. A. Waheed, D. Forsyth, A. Watts, A. F. Saadd, G. R. Mitchell, M. Farmer, and P. J. F. Harris, Radiat. Meas. 44 (9–10), 1109 (2009).

    Article  Google Scholar 

  9. Gwyddion, www.gwyddion.net.

  10. A. A. Bukharaev, S. A. Ziganshina, and A. P. Chuklanov, Zh. Ross. Nanotekhnol. 5 (5–6), 87 (2010).

    Google Scholar 

  11. S. A. Ziganshina, D. A. Bizyaev, D. V. Lebedev, A. P. Chuklanov, and A. A. Bukharaev, Russ. J. Appl. Chem. 83 (10), 1755 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ziganshina.

Additional information

Original Russian Text © S.A. Ziganshina, A.P. Chuklanov, D.A. Biziaev, A.A. Bukharaev, 2016, published in Poverkhnost’, 2016, No. 9, pp. 63–69.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziganshina, S.A., Chuklanov, A.P., Biziaev, D.A. et al. Surface morphology and electrocatalytic properties of nickel nanoparticles formed in track pores. J. Surf. Investig. 10, 942–948 (2016). https://doi.org/10.1134/S1027451016050207

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451016050207

Keywords

Navigation