Skip to main content
Log in

Estimation of Energy and Time Parameters of Laser Radiation for Efficient Excitation of Phosphorus Oxide Fluorescence

  • OPTICAL INSTRUMENTATION
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

We present a mathematical model of the process of laser-induced fluorescence of phosphorus oxide (PO) molecules. Based on the model, the dependences of the fluorescence intensity of PO molecules on the energy and time parameters of exciting laser radiation are derived. It is ascertained that the dependence of the PO fluorescence signal on the energy density of the exciting radiation is a saturation curve, and the dependence on the pulse duration under real atmospheric conditions has a local maximum. It is shown that the optimal pulse duration decreases with the exciting radiation energy density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. D. Wu, J. P. Singh, F. Y. Yueh, and D. L. Monts, “2,4,6-trinitrotoluene detection by laser-photofragmentation-laser-induced fluorescence,” Appl. Opt. 35 (21), 3998–4003 (1996).

    Article  ADS  Google Scholar 

  2. J. B. Simeonsson and R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas phase chemical analysis,” Appl. Spectrosc. Rev. 31 (1), 1–72 (1996).

    Article  ADS  Google Scholar 

  3. V. Swayambunathan, G. Singh, and R. C. Sausa, “Laser photofragmentation-fragment detection and pyrolysis-laser-induced fluorescence studies on energetic materials,” Appl. Opt. 38 (30), 6447–6454 (1999).

    Article  ADS  Google Scholar 

  4. N. Daugey, J. Shu, I. Bar, and S. Rosenwaks, “Nitrobenzene detection by one-color laser photolysis/laser induced fluorescence of NO (v = 0–3),” Appl. Spectrosc. 53 (1), 57–64 (1999).

    Article  ADS  Google Scholar 

  5. J. Shu, I. Bar, and S. Rosenwaks, “Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO,” App-l. Opt. 38 (21), 4705–4710 (1999).

    Article  ADS  Google Scholar 

  6. J. Shu, I. Bar, and S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates,” Appl. Phys. B 71 (5), 665–672 (2000).

    Article  ADS  Google Scholar 

  7. T. Arusi-Parpar, D. Heflinger, and R. Lavi, “Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24°C: A unique scheme for remote detection of explosives,” Appl. Opt. 40 (36), 6677–6681 (2001).

    Article  ADS  Google Scholar 

  8. C. M. Wynn, S. Palmacci, R. R. Kunz, and M. Rothschild, “Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence,” Opt. Express 18 (6), 5399–5406 (2010).

    Article  ADS  Google Scholar 

  9. C. M. Wynn, S. Palmacci, R. R. Kunz, and M. Aernecke, “Noncontact optical detection of explosive particles via photodissociation followed by laser-induced fluorescence,” Opt. Express 19 (19), 18671–18677 (2011).

    Article  ADS  Google Scholar 

  10. S. M. Bobrovnikov, A. B. Vorozhtsov, E. V. Gorlov, V. I. Zharkov, E. M. Maksimov, Y. N. Panchenko, and G. V. Sakovich, “Lidar detection of explosive vapors in the atmosphere,” Russ. Phys. J. 58 (9), 1217–1225 (2016).

    Article  Google Scholar 

  11. S. E. Bisson, J. M. Headrick, T. A. Reichardt, R. L. Farrow, and T. J. Kulp, “A two-pulse, pump-probe method for short-range, remote standoff detection of chemical warfare agents,” Proc. SPIE—Int. Soc. Opt. Eng. 8018, 80180 (2011).

  12. S. M. Bobrovnikov, E. V. Gorlov, V. I. Zharkov, and A. D. Safyanov, “Laser-induced fluorescence of PO photofragments of organophosphates,” Atmos. Ocean. Opt. 35 (6), 639–644 (2022).

    Article  Google Scholar 

  13. S. M. Bobrovnikov, E. V. Gorlov, and V. I. Zharkov, “Estimation of the limiting sensitivity of laser fragmentation/laser-induced fluorescence technique for detection of nitrocompound vapors in atmosphere,” Atmos. Ocean. Opt. 36 (1), 70–77 (2023).

    Article  Google Scholar 

  14. S. M. Bobrovnikov, E. V. Gorlov, V. I. Zharkov, Yu. N. Panchenko, and A. V. Puchikin, “Experimental study of the dynamics of laser fragmentation of nitrotoluene and nitrobenzene vapors,” Atmos. Ocean. Opt. 36 (3), 272–276 (2023).

    Article  Google Scholar 

  15. S. M. Bobrovnikov, E. V. Gorlov, and V. I. Zharkov, “Estimation of the efficiency of laser excitation of phosphorus oxide molecules,” Atmos. Ocean. Opt. 34 (4), 302–312 (2021).

    Article  Google Scholar 

  16. S. M. Bobrovnikov, E. V. Gorlov, and V. I. Zharkov, “Efficiency of laser excitation of PO photofragments of organophosphates,” Atmos. Ocean. Opt. 35 (4), 329–340 (2022).

    Article  Google Scholar 

  17. S. M. Bobrovnikov, E. V. Gorlov, V. I. Zharkov, and S. N. Murashko, “Estimation of the efficiency of laser excitation of the B 2Σ+(v′ = 0)−X 2Π(v′′ = 0) transition of phosphorus oxide,” Opt. Atmos. Okeana 35 (5), 361–368 (2022).

    Google Scholar 

  18. R. C. Sausa, A. W. Miziolek, and S. R. Long, “State distributions, quenching, and reaction of the phosphorus monoxide radical generated in excimer laser photofragmentation of dimethyl methylphosphonate,” J. Phys. Chem. 90 (17), 3994–3998 (1986).

    Article  Google Scholar 

  19. S. Sankaranarayanan, “γ-centroids and Franck–Condon factors for the bands of A 2Σ − X 2Π system of PO molecule,” Indian J. Phys., A 40, 678–680 (1966).

    Google Scholar 

  20. K. N. Wong, W. R. Anderson, and A. J. Kotlar, “Radiative processes following laser excitation of the A 2Σ+ state of PO,” J. Chem. Phys. 85 (5), 2406–2413 (1986).

    Article  ADS  Google Scholar 

  21. K. C. Smyth and W. G. Mallard, “Two-photon ionization processes of PO in a C2H2/air flame,” J. Chem. Phys. 77 (4), 1779–1787 (1982).

    Article  ADS  Google Scholar 

  22. Y. Yin, D. Shi, J. Sun, and Z. Zhu, “Transition probabilities of emissions and rotationless radiative lifetimes of vibrational levels for the PO radical,” Astrophys. J., Suppl. Ser. 236 (34), 1–15 (2018).

    Article  Google Scholar 

  23. R. D. Verma, M. N. Dixit, S. S. Jois, S. Nagaraj, and S. R. Singhal, “Emission spectrum of the PO molecule. Part II. 2Σ−2Σ transitions,” Can. J. Phys. 49 (24), 3180–3200 (1971).

    Article  ADS  Google Scholar 

  24. R. M. Measures, “Lidar equation analysis allowing for target lifetime, laser pulse duration, and detector integration period,” Appl. Opt. 16 (4), 1092–1103 (1977).

    Article  ADS  Google Scholar 

  25. Y. Panchenko, A. Puchikin, S. Yampolskaya, S. Bobrovnikov, E. Gorlov, and V. Zharkov, “Narrowband KrF laser for lidar systems,” IEEE J. Quantum Electron. 57 (2), 1–5 (2021).

    Article  Google Scholar 

  26. https://solarlaser.com/devices/narrow-linewidth-ti-sapphire-laser-model-lx329/. Cited February 28, 2023.

  27. S. R. Long, R. C. Sausa, and A. W. Miziolek, “LIF studies of PO produced in excimer laser photolysis of dimethyl methyl phosphonate,” Chem. Phys. Lett. 117 (5), 505–510 (1985).

    Article  ADS  Google Scholar 

  28. K. N. Wong, W. R. Anderson, A. J. Kotlar, M. A. DeWilde, and L. J. Decker, “Lifetimes and quenching of B 2Σ+ by atmospheric gases,” J. Chem. Phys. 84 (1), 81–90 (1986).

    Article  ADS  Google Scholar 

  29. S. R. Long, S. D. Christesen, and A. P. Force, “Rate constant for the reaction of PO radical with oxygen,” Chem. Phys. Lett. 84 (10), 5965–5966 (1985).

    Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (grant no. 20-79-10 297).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. M. Bobrovnikov, E. V. Gorlov, V. I. Zharkov or S. N. Murashko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrovnikov, S.M., Gorlov, E.V., Zharkov, V.I. et al. Estimation of Energy and Time Parameters of Laser Radiation for Efficient Excitation of Phosphorus Oxide Fluorescence. Atmos Ocean Opt 36, 556–561 (2023). https://doi.org/10.1134/S1024856023050068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023050068

Keywords:

Navigation