Skip to main content
Log in

Estimation of the Efficiency of Laser Excitation of Phosphorus Oxide Molecules

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The vibrational and rotational terms of the \({{X}^{2}}\Pi \) and \({{A}^{2}}{{\Sigma }^{ + }}\) electronic states of the phosphorus oxide (PO) molecule are calculated, as well as the absorption spectrum corresponding to the \({{A}^{2}}{{\Sigma }^{ + }}({v}{\kern 1pt} ' = 0;J{\kern 1pt} ') - {{X}^{2}}\Pi ({v}{\kern 1pt} '' = 0;J{\kern 1pt} '')\) transition. The efficiency of laser excitation of PO molecules is estimated versus spectral parameters of the radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. H. Keller-Rudek, G. K. Moortgat, R. Sander, and R. Sorensen, “The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest,” Earth Syst. Sci. Data 5, 365–373 (2013).

    Article  ADS  Google Scholar 

  2. M. O. Rodgers, K. Asai, and D. D. Davis, “Photofragmentation-laser induced fluorescence: A new method for detecting atmospheric trace gases,” Appl. Opt. 19 (21), 3597–3605 (1980).

    Article  ADS  Google Scholar 

  3. M. O. Rodgers and D. D. Davis, “A UV-photofragmentation/laser-induced fluorescence sensor for the atmospheric detection of HONO,” Environ. Sci. Technol. 23 (9), 1106–1112 (1989).

    Article  ADS  Google Scholar 

  4. S. T. Sandholm, J. D. Bradshaw, K. S. Dorris, M. O. Rodgers, and D. D. Davis, “An airborne compatible photofragmentation two-photon laser-induced fluorescence instrument for measuring background tropospheric levels of NO, NOx, and NO2,” J. Geophys. Res. D 95 (7), 161 (1990).

    Article  Google Scholar 

  5. D. B. Galloway, J. A. Bartz, L. G. Huey, and F. F. Crim, “Pathways and kinetic energy disposal in the photodissociation of nitrobenzene,” J. Chem. Phys. 98 (3), 2107–2114 (1993).

    Article  ADS  Google Scholar 

  6. G. W. Lemire, J. B. Simeonsson, and R. C. Sausa, “Monitoring of vapor-phase nitro compounds using 226-nm radiation: Fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection,” Anal. Chem. 65 (5), 529–533 (1993).

    Article  Google Scholar 

  7. D. B. Galloway, T. Glenewinkel-Meyer, J. A. Bartz, L. G. Huey, and F. F. Crim, “The kinetic and internal energy of no from the photodissociation of nitrobenzene,” J. Chem. Phys. 100 (3), 1946–1952 (1994).

    Article  ADS  Google Scholar 

  8. D. D. Wu, J. P. Singh, F. Y. Yueh, and D. L. Monts, “2,4,6-trinitrotoluene detection by laser-photofragmentation-laser-induced fluorescence,” Appl. Opt. 35 (21), 3998–4003 (1996).

    Article  ADS  Google Scholar 

  9. J. B. Simeonsson and R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas phase chemical analysis,” Appl. Spectrosc. Rev. 31 (1), 1–72 (1996).

    Article  ADS  Google Scholar 

  10. V. Swayambunathan, G. Singh, and R. C. Sausa, “Laser photofragmentation-fragment detection and pyrolysis-laser-induced fluorescence studies on energetic materials,” Appl. Opt. 38 (30), 6447–6454 (1999).

    Article  ADS  Google Scholar 

  11. N. Daugey, J. Shu, I. Bar, and S. Rosenwaks, “Nitrobenzene detection by one-color laser photolysis/laser induced fluorescence of NO (ν = 0–3),” Appl. Spectrosc. 53 (1), 57–64 (1999).

    Article  ADS  Google Scholar 

  12. J. Shu, I. Bar, and S. Rosenwaks, “Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO,” Appl. Opt. 38 (21), 4705–4710 (1999).

    Article  ADS  Google Scholar 

  13. J. Shu, I. Bar, and S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates,” Appl. Phys. B 71 (5), 665-672 (2000).

    Article  ADS  Google Scholar 

  14. J. Shu, I. Bar, and S. Rosenwaks, “The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators,” Appl. Phys. B 70 (4), 621–625 (2000).

    Article  ADS  Google Scholar 

  15. T. Arusi-Parpar, D. Heflinger, and R. Lavi, “Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24°C: A unique scheme for remote detection of explosives,” Appl. Opt. 40 (36), 6677–6681 (2001).

    Article  ADS  Google Scholar 

  16. D. Heflinger, T. Arusi-Parpar, Y. Ron, and R. Lavi, “Application of a unique scheme for remote detection of explosives,” Opt. Commun. 204 (1-6), 327–331 (2002).

    Article  ADS  Google Scholar 

  17. C. M. Wynn, S. Palmacci, R. R. Kunz, J. J. Zayhowski, B. Edwards, and M. Rothschild, “Experimental demonstration of remote optical detection of trace explosives,” Proc. SPIE—Int. Soc. Opt. Eng. 6954, 695407–8 (2008).

  18. T. Arusi-Parpar, S. Fastig, J. Shapira, B. Shwartzman, D. Rubin, Y. Ben-Hamo, and A. Englander, “Standoff detection of explosives in open environment using enhanced photodissociation fluorescence,” Proc. SPIE—Int. Soc. Opt. Eng. 7684, 76840 (2010).

  19. C. M. Wynn, S. Palmacci, R. R. Kunz, and M. Rothschild, “Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence,” Opt. Express 18 (6), 5399–5406 (2010).

    Article  ADS  Google Scholar 

  20. C. M. Wynn, S. Palmacci, R. R. Kunz, and M. Aernecke, “Noncontact optical detection of explosive particles via photodissociation followed by laser-induced fluorescence,” Opt. Express 19 (19), 18671–18677 (2011).

    Article  ADS  Google Scholar 

  21. S. M. Bobrovnikov and E. V. Gorlov, “Lidar method for remote detection of vapors of explosives in the atmosphere,” Atmos. Oceanic Opt. 24 (3), 235–241 (2011).

    Article  Google Scholar 

  22. S. M. Bobrovnikov, A. B. Vorozhtsov, E. V. Gorlov, V. I. Zharkov, E. M. Maksimov, Y. N. Panchenko, and G. V. Sakovich, “Lidar detection of explosive vapors in the atmosphere,” Rus. Phys. J. 58 (9), 1217–1225 (2016).

    Article  Google Scholar 

  23. S. M. Bobrovnikov, E. V. Gorlov, V. I. Zharkov, Yu. N. Panchenko, and A. V. Puchikin, “Two-pulse laser fragmentation/laser-induced fluorescence of nitrobenzene and nitrotoluene vapors,” Appl. Opt. 58 (27), 7497–7502 (2019).

    Article  ADS  Google Scholar 

  24. S. M. Bobrovnikov, E. V. Gorlov, and V. I. Zharkov, “Evaluation of limiting sensitivity of the one-color laser fragmentation/laser-induced fluorescence method in detection of nitrobenzene and nitrotoluene vapors in the atmosphere,” Atmosphere 10 (11), 1–11 (2019).

    Article  Google Scholar 

  25. S. M. Bobrovnikov, E. V. Gorlov, V. I. Zharkov, Yu. N. Panchenko, and A. V. Puchikin, “Dynamics of the laser fragmentation/laser-induced fluorescence process in nitrobenzene vapors,” Appl. Opt. 57 (31), 9381–9387 (2018).

    Article  ADS  Google Scholar 

  26. J. M. St. Clair, T. F. Hanisco, E. M. Weinstock, E. J. Moyer, D. S. Sayres, F. N. Keutsch, J. H. Kroll, J. N. Demusz, N. T. Allen, J. B. Smith, J. R. Spackman, and J. G. Anderson, “A new photolysis laser-induced fluorescence instrument for the detection of H2O and NDO in the lower stratosphere,” Rev. Sci. Instrum. 79 (6), 064101-1–14 (2008).

    Article  ADS  Google Scholar 

  27. K. Larsson, O. Johansson, M. Alden, and J. Bood, “Simultaneous visualization of water and hydrogen peroxide vapor using two-photon laser-induced fluorescence and photofragmentation laser-induced fluorescence,” Appl. Spectrosc. 68 (12), 1333–1341 (2014).

    Article  ADS  Google Scholar 

  28. O. Johansson, J. Bood, M. Alden, and U. Lindblad, “Detection of hydrogen peroxide using photofragmentation laser-induced fluorescence,” Appl. Spectrosc. 62 (1), 66–72 (2008).

    Article  ADS  Google Scholar 

  29. O. Johansson, J. Bood, M. Alden, and U. Lindblad, “Hydroxyl radical consumption following photolysis of vapor-phase hydrogen peroxide at 266 nm: Implications for photofragmentation laser-induced fluorescence measurements of hydrogen peroxide,” Appl. Phys. B 97 (2), 515–522 (2009).

    Article  ADS  Google Scholar 

  30. K. Larsson, D. Hot, A. Ehn, A. Lantz, W. Weng, M. Alden, and J. Bood, “Quantitative imaging of ozone vapor using photofragmentation laser-induced fluorescence (LIF),” Appl. Spectrosc. 71 (7), 1578–1585 (2017).

    Article  ADS  Google Scholar 

  31. K. Larsson, D. Hot, J. Gao, C. Kong, Z. Li, M. Alden, J. Bood, and A. Ehn, “Instantaneous imaging of ozone in a gliding arc discharge using photofragmentation laser-induced fluorescence,” J. Phys. D: Appl. Phys. 51 (13), 1–7 (2018).

    Article  Google Scholar 

  32. W. Liao, A. Hecobian, J. Mastromarino, and D. Tan, “Development of a photo-fragmentation/laser-induced fluorescence measurement of atmospheric nitrous acid,” Atmos. Environ. 40 (1), 17–26 (2006).

    Article  ADS  Google Scholar 

  33. S. R. Long, R. C. Sausa, and A. W. Miziolek, “LIF studies of PO produced in excimer laser photolysis of dimethyl methyl phosphonate,” Chem. Phys. Lett. 117 (5), 505–510 (1985).

    Article  ADS  Google Scholar 

  34. S. E. Bisson, J. M. Headrick, T. A. Reichardt, R. L. Farrow, and T. J. Kulp, “A two-pulse, pump-probe method for short-range, remote standoff detection of chemical warfare agents,” Proc. SPIE—Int. Soc. Opt. Eng. 8018, 80180 (2011).

  35. E. L. Hill and J. H. Van Vleck, “On the quantum mechanics of the rotational distortion of multiplets in molecular spectra,” Phys. Rev. 32 (2), 250–272 (1928).

    Article  ADS  MATH  Google Scholar 

  36. R. K. Hinkley, J. A. Hall, T. Walker, and W. G. Richards, “Λ doubling in 2Π states of diatomic molecules,” J. Phys. B 5 (2), 204–212 (1972).

    Article  ADS  Google Scholar 

  37. J. H. Van Vleck, “On σ-type doubling and electron spin in the spectra of diatomic molecules,” Phys. Rev. 33 (4), 467–506 (1929).

    Article  ADS  MATH  Google Scholar 

  38. R. D. Verma and S. R. Singhal, “New results on the B2+, b4, and X2Π states of PO,” Can. J. Phys. 53, 411–419 (1975).

    Article  ADS  Google Scholar 

  39. G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (D. van Nostrand company, Toronto, 1950).

  40. S. Bailleux, M. Bogey, C. Demuynck, Y. Liu, and A. Walters, “Millimeter-wave spectroscopy of PO in excited vibrational states up to ν = 7,” J. Mol. Spectrosc. 216 (2), 465–471 (2002).

    Article  ADS  Google Scholar 

  41. K. S. Rao, “Rotational analysis of the γ system of the PO molecule,” Can. J. Phys. 36 (11), 1526–1535 (1958).

    Article  ADS  Google Scholar 

  42. R. D. Verma and S. S. Jois, “Emission spectrum of the PO molecule. Part IV. Spectrum in the region 7000–12000 A,” Can. J. Phys. 51 (3), 322–333 (1973).

    Article  ADS  Google Scholar 

  43. B. Coquart, M. Paz, and J. C. Prudhomme, “Transition \({{A}^{2}}{{\Sigma }^{ + }}{\kern 1pt} - {\kern 1pt} {{X}^{2}}\Pi \) des molecules P16O et P18O. Perturbations de l’etat \({{A}^{2}}{{\Sigma }^{ + }}\),” Can. J. Phys. 53 (4), 377–384 (1975).

    Article  ADS  Google Scholar 

  44. H.-P. Dorn, R. Neuroth, and A. Hofzumahaus, “Investigation of OH absorption cross sections of rotational transitions in the \({{A}^{2}}{{\Sigma }^{ + }}\), \(\upsilon {\kern 1pt} ' = 0 \leftarrow {{X}^{2}}\Pi \), \(\upsilon {\kern 1pt} '' = 0\) band under atmospheric conditions: Implications for tropospheric long-path absorption measurements,” J. Geophys. Res.: Atmos. 100 (4), 7397–7409 (1995).

    Article  ADS  Google Scholar 

  45. L. A. Kuznetsova, N. E. Kuz’menko, Yu. Ya. Kuzyakov, and Yu. A. Plastinin, “Probabilities of optical transitions in electronic vibration-rotation spectra of diatomic molecules,” Sov. Phys.-Usp. 17 (3), 405–423 (1974).

    Article  ADS  Google Scholar 

  46. I. Kovacs, Rotational Structure in the Spectra of Diatomic Molecules (Academic Kiado, Budapest, 1969).

    Google Scholar 

  47. E. E. Whiting, A. Schadee, J. B. Tatum, J. T. Hougen, and R. W. Nicholls, “Recommended conventions for defining transition moments and intensity factors in diatomic molecular spectra,” J. Mol. Spectrosc. 80 (2), 249–256 (1980).

    Article  ADS  Google Scholar 

  48. E. E. Whiting, J. A. Paterson, I. Kovacs, and R. W. Nicholls, “Computer checking of rotational line intensity factors for diatomic transitions,” J. Mol. Spectrosc. 47 (1), 84–98 (1973).

    Article  ADS  Google Scholar 

  49. K. N. Wong, W. R. Anderson, and A. J. Kotlar, “Radiative processes following laser excitation of the state of PO,” J. Chem. Phys. 85 (5), 2406–2413 (1986).

    Article  ADS  Google Scholar 

  50. A. Y. Chang, M. D. DiRosa, and R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO AX(0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 41 (5), 375–390 (1992).

    Article  ADS  Google Scholar 

  51. B. Edlen, “The refractive index of air,” Metrologia 2 (2), 12–80 (1966).

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 20-79-10 297).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Gorlov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrovnikov, S.M., Gorlov, E.V. & Zharkov, V.I. Estimation of the Efficiency of Laser Excitation of Phosphorus Oxide Molecules. Atmos Ocean Opt 34, 302–312 (2021). https://doi.org/10.1134/S1024856021040047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021040047

Keywords:

Navigation