Skip to main content
Log in

Dimer Absorption in the Longwave Wing of the H2O Rotational Band

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The absorption spectrum of stable dimers in the longwave wing of the H2O rotational band is estimated proceeding from available experimental data on the H2O continuum absorption in this region and calculations based on the asymptotic line wing theory. The spectral line contour of the rotational band describing the spectral and temperature behavior of the H2O continuum absorption in the 8–12 μm range was used in the calculations. The spectrum derived does not conflict with computations with the dimer model of the continuum absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. A. Bauer, M. Godon, J. Carlier, Q. Ma, and R. H. Tipping, “Absorption by H2O and H2O–N2 mixtures at 153 GHz,” J. Quant. Spectrosc. Radiat. Transfer 50 (5), 463–475 (1993).

    Article  ADS  Google Scholar 

  2. T. Kuhn, A. Bauer, M. Godon, S. Buhler, and K. Kunzi, “Water vapor continuum: Absorption measurements at 350 GHz and model calculations,” J. Quant. Spectrosc. Radiat. Transfer 74, 545–562 (2002).

    Article  ADS  Google Scholar 

  3. N. I. Furashov and V. Yu. Katkov, “Humidity dependence of the atmospheric absorption coefficient in the transparency windows centered at 0.88 and 0.73 mm,” Int. J. Infrared Mill. Waves 6 (8), 751–764 (1985).

    Article  ADS  Google Scholar 

  4. D. E. Burch and D. A. Gryvnak, Method of Calculating H 2 O Transmission between 333 and 633 cm −1 . Report AFGL-TR-79-0054 (AFGL, 1979).

  5. D. E. Burch, Continuum absorption by atmospheric H 2 O. Report AFGL-TR-81-0300 (AFGL, 1982).

  6. D. E. Burch, “Continuum absorption by atmospheric H2O,” Proc. SPIE—Int. Soc. Opt. Eng. 277, 28–39 (1981).

  7. V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transfer 109, 458–467 (2008).

    Article  ADS  Google Scholar 

  8. T. A. Odintsova, M. Yu. Tretyakov, O. Pirali, and P. Roy, “Water vapor continuum in the range of rotational spectrum of H2O molecule: New experimental data and their comparative analysis,” J. Quant. Spectrosc. Radiat. Transfer 187, 116–123 (2017).

    Article  ADS  Google Scholar 

  9. T. Odintsova, M. Yu. Tretyakov, A. O. Zibarova, O. Pirali, P. Roy, and A. Campargue, “Far-infrared self-continuum absorption of H2 16O and H2 18O (15–500 cm–1),” J. Quant. Spectrosc. Radiat. Transfer 227, 190–200 (2019).

    Article  ADS  Google Scholar 

  10. T. A. Odintsova, M. Y. Tretyakov, A. A. Simonova, I. V. Ptashnik, O. Pirali, and A. Campargue, “Measurement and temperature dependence of the water vapor self-continuum between 70 and 700 cm–1,” J. Mol. Struct. 1210, 128046 (2020).

    Article  Google Scholar 

  11. T. A. Odintsova, A. O. Koroleva, A. A. Simonova, A. Campargue, and M. Yu. Tretyakov, “The atmospheric continuum in the “terahertz gap” region (15-700 cm–1): Review of experiments at SOLEIL synchrotron and modeling,” J. Mol. Spectrosc. 386, 111603-1–10 (2022).

    Article  Google Scholar 

  12. M. Yu. Tretyakov, M. A. Koshelev, E. A. Serov, V. V. Parshin, T. A. Odintsova, and G. M. Bubnov, “Water dimer and the atmospheric continuum,” Phys.-Uspekhi 57 (11), 1083–1098 (2014).

    Article  ADS  Google Scholar 

  13. L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Spectral Line Profile and Molecular Interaction (Nauka, Novosibirsk, 1986) [in Russian].

    MATH  Google Scholar 

  14. Yu. V. Bogdanova and O. B. Rodimova, “Ratio between monomer and dimer absorption in water vapor within the H2O rotational band,” Atmos. Ocean. Opt. 31 (5), 457–465 (2018).

    Article  Google Scholar 

  15. S. A. Clough, F. X. Kneizys, and R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23 (3-4), 229–241 (1989).

    Article  Google Scholar 

  16. Yu. V. Bogdanova and O. B. Rodimova, “Line shape in far wings and water vapor absorption in a broad temperature interval,” J. Quant. Spectrosc. Radiat. Transfer 111 (15), 2298–2307 (2010).

    Article  ADS  Google Scholar 

  17. Y. I. Baranov, W. J. Lafferty, Q. Ma, and R. H. Tipping, “Water-vapor continuum absorption in the 800–1250 cm–1 spectral region at temperatures from 311 to 363 K,” J. Quant. Spectrosc. Radiat. Transfer 109, 2291–2302 (2008).

    Article  ADS  Google Scholar 

  18. D. J. Paynter, I. V. Ptashnik, K. P. Shine, and K. M. Smith, “Pure water vapour continuum measurements between 3100 and 4400 cm–1: Evidence for water dimer absorption in near atmospheric conditions,” Geophys. Rev. Lett. 34 (12), L12808–1 (2007).

    Article  Google Scholar 

  19. A. A. Viktorova and S. A. Zhevakin, “Microwave absorption by atmospheric water vapor dimers,” Dokl. Akad. Nauk SSSR 194 (3), 540–543 (1970).

    Google Scholar 

  20. M.-S. Lee, F. Baletto, D. G. Kanhere, and S. Scandolo, “Far-infrared absorption of water clusters by first-principles molecular dynamics,” J. Chem. Phys. 128, 214506–1 (2008).

    Article  ADS  Google Scholar 

  21. Y. Scribano and C. Leforestier, “Contribution of water dimers absorption to the millimeter and far infrared atmospheric water continuum,” J. Chem. Phys. 126, 234301–1 (2007).

    Article  ADS  Google Scholar 

  22. I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, “Water vapour self-continuum and water dimers: 1. Analysis of recent work,” J. Quant. Spectrosc. Radiat. Transfer 112, 1286–1303 (2011).

    Article  ADS  Google Scholar 

  23. V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, “Investigation of the water-vapor continuum in the THz region using a multipass cell,” J. Quant. Spectrosc. Radiat. Transfer 91, 287–295 (2005).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is deeply grateful to the authors of [10, 11] for providing original data obtained with SOLEIL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Rodimova.

Ethics declarations

The author declares that she has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodimova, O.B. Dimer Absorption in the Longwave Wing of the H2O Rotational Band. Atmos Ocean Opt 36, 101–104 (2023). https://doi.org/10.1134/S1024856023020124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023020124

Keywords:

Navigation