Skip to main content
Log in

Studies of the Orientation of Crystalline Particles in Ice Clouds by a Scanning Lidar

  • REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Results of studies of the horizontal orientation of crystalline particles using the LOSA-M3 scanning polarization lidar are presented. In 2018 and 2021, several series of measurements of the crystalline upper cloudiness structure were carried out in the zenith scanning mode. In contrast to sounding only in the vertical direction, observations of the dependence of lidar signal characteristics (intensity and depolarization ratio) on the angle of lidar axis tilt make it possible to identify the phase composition of clouds (water or crystalline) and measure the distribution of particle deviation relative to the horizontal plane (flutter). In layers with a pronounced specular reflection, the relationship between the signal intensity and the slope of the sounding path at small angles (up to 5°) is well described by an exponential dependence. The results of sounding when scanning up to angles of 45°–50° showed a high probability of the existence of corner reflection in ice clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. N. Liou, “Influence of cirrus clouds on weather and climate processes: A global perspective,” J. Geophys. Res. 103, 1799–1805 (1986).

    Google Scholar 

  2. K. Sassen, M. K. Griffin, and G. C. Dodd, “Optical scattering and microphysical properties of subvisual cirrus clouds, and climatic implications,” J. Appl. Meteorol. 28 (2), 91–98 (1989).

    Article  ADS  Google Scholar 

  3. K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing: II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58 (15), 2103–2112 (2001).

    Article  ADS  Google Scholar 

  4. V. Noel, H. Chepfer, G. Ledanois, A. Delaval, and P. H. Flamant, “Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio,” Appl. Opt. 41 (21), 4245–4257 (2002).

    Article  ADS  Google Scholar 

  5. Y. You, G. W. Kattawar, P. Yang, Y. X. Hu, and B. A. Baum, “Sensitivity of depolarized lidar signals to cloud and aerosol particle properties,” J. Quant. Spectrosc. Radiat. Transfer 100 (1-3), 470–482 (2006).

    Article  ADS  Google Scholar 

  6. C. Hoareau, P. Keckhut, V. Moel, H. Chepfer, and J.‑L. Baray, “A decadal cirrus clouds climatology from ground-based and spaceborne lidars above the south of France (43.9° N–5.7° E),” Atmos. Chem. Phys. 13, 6951–6963 (2013).

    Article  ADS  Google Scholar 

  7. R. A. Stillwell, R. R. Neely, III, J. P. Thayer, M. D. Shupe, and D. D. Turner, “Improved cloud-phase determination of low-level liquid and mixed-phase clouds by enhanced polarimetric lidar,” Atmos. Meas. Tech. 11, 835–859 (2018).

    Article  Google Scholar 

  8. M. Haarig, R. Engelmann, A. Ansmann, I. Veselovskii, D. N. Whiteman, and D. Althausen, “1064 nm rotational Raman lidar for particle extinction and lidar-ratio profiling: Cirrus case study,” Atmos. Meas. Tech. 9, 4269–4278 (2016).

    Article  Google Scholar 

  9. J. R. Campbell, M. A. Vaughan, M. Oo, R. E. Holz, J. R. Lewis, and E. J. Welton, “Distinguishing cirrus cloud presence in autonomous lidar measurements,” Atmos. Meas. Tech. 8, 435–449 (2015).

    Article  Google Scholar 

  10. C. Lavigne, A. Roblin, and P. Chervet, “Solar glint from oriented crystals in cirrus clouds,” Appl. Opt. 47 (3), 6266–6276 (2008).

    Article  ADS  Google Scholar 

  11. S. Klotzsche and A. Macke, “Influence of crystal tilt on solar irradiance of cirrus clouds,” Appl. Opt. 45 (5), 1034–1040 (2006).

    Article  ADS  Google Scholar 

  12. B. V. Kaul and I. V. Samokhvalov, “Orientation of particles in Ci crystal clouds. Part 1. Orientation at gravitational sedimentation,” Atmos. Ocean. Opt. 18 (11), 866–870 (2005).

    Google Scholar 

  13. H. Chepfer, G. Brogniez, P. Goloub, F. M. Breon, and P. H. Flamant, “Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1,” J. Quant. Spectrosc. Radiat. Transfer 63, 521–543 (1999).

    Article  ADS  Google Scholar 

  14. K. Masuda and H. Ishimoto, “Influence of particle orientation on retrieving cirrus cloud properties by use of total and polarized reflectances from satellite measurements,” J. Quant. Spectrosc. Radiat. Transfer 85, 183–193 (2004).

    Article  ADS  Google Scholar 

  15. F.-M. Breon and B. Dubrulle, “Horizontally oriented plates in clouds,” J. Atmos. Sci. 61, 2888–2898 (2004).

    Article  ADS  Google Scholar 

  16. A. Borovoi, V. Galileiskii, A. Morozov, and A. Cohen, “Detection of ice crystal particles preferably oriented in the atmosphere by use of the specular component of scattered light,” Opt. Express 16 (11), 7625–7633 (2008).

    Article  ADS  Google Scholar 

  17. C. M. R. Platt, “Lidar backscatter from horizontal ice crystal plates,” J. Appl. Meteorol. 17, 482–488 (1978).

    Article  ADS  Google Scholar 

  18. V. Noel and K. Sassen, “Study of ice crystal orientation in ice clouds from scanning polarization lidar observations,” J. Appl. Meteorol. 44 (5), 653–664 (2005).

    Article  ADS  Google Scholar 

  19. W. N. Chen, C. W. Chiang, and J. B. Nee, “Lidar ratio and depolarization ratio for cirrus clouds,” Appl. Opt. 41 (30), 6470–6476 (2002).

    Article  ADS  Google Scholar 

  20. C. M. R. Platt, N. L. Abshire, and G. T. McNice, “Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals,” J. Appl. Meteorol. 17 (8), 1220–1224 (1978).

    Article  ADS  Google Scholar 

  21. K. Sassen, “Ice crystal habit discrimination with the optical backscatter depolarization technique,” J. Appl. Meteorol. 16, 425–431 (1977).

    Article  ADS  Google Scholar 

  22. K. Sassen, “Corona-producing cirrus cloud properties derived from polarization lidar and photographic analyses,” Appl. Opt. 30 (24), 3421–3428 (1991).

    Article  ADS  Google Scholar 

  23. C. M. R. Platt, N. L. Abshire, and G. T. McNice, “Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals,” J. Appl. Meteorol. 17 (8), 1220–1224 (1978).

    Article  ADS  Google Scholar 

  24. L. Thomas, J. C. Cartwright, and D. P. Wareing, “Lidar observation of the horizontal orientation of ice crystals in cirrus clouds,” Tellus 42B, 211–216 (1990).

    Article  ADS  Google Scholar 

  25. H. M. Cho, P. Yang, G. W. Kattawar, S. L. Nasiri, Y. Hu, P. Minnis, C. Trepte, and D. Winker, “Depolarization ratio and attenuated backscatter for nine cloud types: Analyses based on collocated CALIPSO lidar and MODIS measurements,” Opt. Express 16 (6), 3931–3948 (2008).

    Article  ADS  Google Scholar 

  26. V. Noel and H. Chepfer, “A global view of horizontally oriented crystals in ice clouds from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO),” J. Geophys. Res. 115 (23), D00 (2010).

    Google Scholar 

  27. R. Yoshida, H. Okamoto, Y. Hagihara, and H. Ishimoto, “Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio,” J. Geophys. Res. 115 (3), D00 (2010).

    Article  Google Scholar 

  28. W. H. Hunt, D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, “CALIPSO lidar description and performance assessment,” J. Atmos. Ocean. Technol. 26 (7), 1214–1228 (2009).

    Article  ADS  Google Scholar 

  29. G. P. Kokhanenko, Yu. S. Balin, M. G. Klemasheva, S. V. Nasonov, M. M. Novoselov, I. E. Penner, and S. V. Samoilova, “Scanning polarization lidar LOSA-M3: Opportunity for research of crystalline particle orientation in the clouds of upper layers,” Atmos. Meas. Tech. 13, 1113–1127 (2020).

    Article  Google Scholar 

  30. A. Borovoi, I. Grishin, E. Naats, and U. Oppel, “Backscattering peak of hexagonal ice columns and plates,” Opt. Lett. 25 (18), 1388–1390 (2000).

    Article  ADS  Google Scholar 

  31. A. Konoshonkin, Zh. Wang, A. Borovoi, N. Kustova, D. Liu, and Ch. Xie, “Backscatter by azimuthally oriented ice crystals of cirrus clouds,” Opt. Express 24 (18), A1257–1268 (2016).

    Article  ADS  Google Scholar 

  32. A. G. Borovoi, A. V. Konoshonkin, N. V. Kustova, and I. A. Veselovskii, “Contribution of corner reflection from oriented ice crystals to backscattering and depolarization characteristics for off-zenith lidar profiling,” J. Quant. Spectrosc. Radiat. Transfer 212, 88–96 (2018).

    Article  ADS  Google Scholar 

  33. V. A. Shishko, I. D. Bryukhanov, E. V. Nie, N. V. Kustova, D. N. Timofeev, and A. V. Konoshonkin, “Algorithm for interpreting light backscattering matrices of cirrus clouds for the retrieval of their microphysical parameters,” Atmos. Ocean. Opt. 32 (4), 393–399 (2019).

    Article  Google Scholar 

  34. I. V. Samokhvalov, I. D. Bryukhanov, V. A. Shishko, N. V. Kustova, E. V. Nie, A. V. Konoshonkin, O. Yu. Loktyushin, and D. N. Timofeev, “Estimation of microphysical characteristics of contrails by polarization lidar data: Theory and experiment,” Atmos. Ocean. Opt. 32 (4), 400–409 (2019).

    Article  Google Scholar 

  35. M. Del Guasta, E. Vallar, O. Riviere, F. Castagnoli, V. Venturi, and M. Morandi, “Use of polarimetric lidar for the study of oriented ice plates in clouds,” Appl. Opt. 45 (20), 4878–4887 (2006).

    Article  ADS  Google Scholar 

  36. M. Hayman, S. Spuler, B. Morley, and J. VanAndel, “Polarization lidar operation for measuring backscatter phase matrices of oriented scatterers,” Opt. Express 20 (28), 29553–9567 (2012).

    Article  ADS  Google Scholar 

  37. I. Veselovskii, P. Goloub, T. Podvin, D. Tanre, A. Ansmann, M. Korenskiy, A. Borovoi, Q. Hu, and D. N. Whiteman, “Spectral dependence of backscattering coefficient of mixed phase clouds over west africa measured with two-wavelength raman polarization lidar: Features attributed to ice-crystals corner reflection,” J. Quant. Spectrosc. Radiat. Transfer 202, 74–80 (2017).

    Article  ADS  Google Scholar 

  38. R. R. Neely, M. Hayman, R. A. Stillwell, J. P. Thayer, R. M. Hardesty, M. O’Neill, M. D. Shupe, and C. Alvarez, “Polarization lidar at summit, greenland for the detection of cloud phase and particle orientation,” J. Atmos. Ocean. Tech. 30, 1635–1655 (2013).

    Article  Google Scholar 

  39. Y. Hu, M. Vaughan, Zh. Liu, B. Lin, P. Yang, D. Flittner, B. Hunt, R. Kuehn, J. Huang, D. Wu, Sh. Rodier, K. Powell, Ch. Trepte, and D. Winker, “The depolarization-attenuated backscatter relation: CALIPSO lidar measurements vs. theory,” Opt. Express 15 (9), 5327–5332 (2007).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were carried out using the equipment of the Center for Collective Use “Atmosphere”.

Funding

This work was partly supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-661), the Russian Foundation for Basic Research and Tomsk oblast (project no. 19-48-700014-r in regard to modernization of the lidar transceiver and carrying out the observations and no. 21-55-53 027 in regard to the theoretical assessment of optical properties of crystals), and by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, in regard to the software development and sounding data processing).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. P. Kokhanenko, Yu. S. Balin, A. G. Borovoi or M. M. Novoselov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokhanenko, G.P., Balin, Y.S., Borovoi, A.G. et al. Studies of the Orientation of Crystalline Particles in Ice Clouds by a Scanning Lidar. Atmos Ocean Opt 35, 509–516 (2022). https://doi.org/10.1134/S1024856022050141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856022050141

Keywords:

Navigation