Skip to main content
Log in

Vertical Distribution of Alkanes in Atmospheric Aerosol in the Russian Arctic in September 2020

  • OPTICS OF CLUSTERS, AEROSOLS, AND HYDROSOLES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

A combined experiment aimed at the study of the air composition over all the seas in the Russian Arctic was carried out in September 2020 with the Optik Tu-134 flying laboratory. The experiment included sampling the of atmospheric aerosol in the air layer from 200 to 9000 m above sea level and determining the concentration of saturated hydrocarbons (n-alkanes) in aerosol particles. Saturated hydrocarbon compounds in the range С9Н20–С27Н56 were found in the air of this sector of the Arctic. The main mass of this class of organic compounds is concentrated in the narrower range С10Н22–С20Н42. The concentration of n-alkanes in aerosol over all the seas was low (ranging within 9.3–12.6 ng/m3). The only exception was the Chukchi Sea, over which the concentration attained 37.7 ng/m3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. A. Semenov, “Modern studies of the Arctic climate: Progress, change of concepts, problems to solve,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 57 (1), 21–35 (2021).

    Google Scholar 

  2. J. Richter-Menge and M. L. Druckenmiller, “State of the climate in 2019 the Arctic,” Bull. Am. Meteorol. Soc. 101 (8), 239–286 (2020).

    Article  Google Scholar 

  3. T. Yamanouchi and K. Takata, “Rapid change of the Arctic climate system and its global influences–overview of GRENE Arctic Climate Change Research Project (2011–2016),” Polar Sci. 25, 100548 (2020).

    Article  Google Scholar 

  4. A. A. Vasiliev, D. S. Drozdov, A. G. Gravis, G. V. Malkova, K. E. Nyland, and D. A. Streletskiy, “Permafrost degradation in the western Russian Arctic,” Environ. Res. Lett. 15 (4), 045001 (2020).

    Article  ADS  Google Scholar 

  5. J. E. Box, W. T. Colgan, T. R. Christensen, N. M. Schmidt, M. Lund, F.-J. W. Parmentier, R. Brown, U. S. Bhatt, E. S. Euskirchen, V. E. Romanovsky, J. E. Walsh, J. E. Overland, M. Wang, R. W. Corell, W. N. Meier, B. Wouters, S. Mernild, J. Mard, J. Pawlak, and M. S. Olsen, “Key indicators of Arctic climate change: 1971–2017,” Environ. Res. Lett. 14 (4), 045010 (2019).

    Article  ADS  Google Scholar 

  6. A. A. Vinogradova, A. V. Vasil’eva, and Yu. A. Ivanova, “Air pollution by black carbon in the region of Wrangel Island: Comparison of Eurasian and American sources and their contributions,” Atmos. Ocean. Opt. 34 (2), 97–103 (2021).

    Article  Google Scholar 

  7. A. Witze, “Why Arctic fires are bad news for climate change,” Nature 585 (7825), 336–337 (2020).

    Article  ADS  Google Scholar 

  8. S. Sharma, L. A. Barrie, E. Magnusson, G. Brattstrom, W. R. Leaitch, A. Steffen, and S. Landsberger, “A factor and trends analysis of multidecadal lower tropospheric observations of arctic aerosol composition, black carbon, ozone, and mercury at Alert, Canada,” J. Geophys. Res.: Atmos. 124 (24), 14 133–14 161 (2019).

    Article  Google Scholar 

  9. M. D. Willis, W. R. Leaitch, and J. P. Abbatt, “processes controlling the composition and abundance of Arctic aerosol,” Rev. Geophys. 56 (4), 621–671 (2018).

    Article  ADS  Google Scholar 

  10. X. Chen, D. B. Millet, H. B. Singh, A. Wisthaler, E. C. Apel, E. L. Atlas, D. R. Blake, I. Bourgeois, S. S. Brown, J. D. Crounse, J. A. de Gouw, F. M. Flocke, A. Fried, B. G. Heikes, R. S. Hornbrook, T. Mikoviny, K.-E. Min, M. Muller, J. A. Neuman, D. W. O’ Sullivan, J. Peischl, G. G. Pfister, D. Richter, J. M. Roberts, T. B. Ryerson, S. R. Shertz, C. R. Thompson, V. Treadaway, P. R. Veres, J. Walega, C. Warneke, R. A. Washenfelder, P. Weibring, and B. Yuan, “On the sources and sinks of atmospheric VOCs: An integrated analysis of recent aircraft campaigns over North America,” Atmos. Chem. Phys. 19 (14), 9097–9123 (2019).

    Article  ADS  Google Scholar 

  11. J. B. Pernov, R. Bossi, T. Lebourgeois, J. K. Nojgaard, R. Holzinger, J. L. Hjorth, and H. Skov, “Atmospheric VOC measurements at a high Arctic site: Characteristics and source apportionment,” Atmos. Chem. Phys. 21 (4), 2895–2916 (2021).

    Article  ADS  Google Scholar 

  12. K. Siegel, L. Karlsson, P. Zieger, A. Baccarini, J. Schmale, M. Lawler, M. Salter, C. Leck, A. M. L. Ekman, I. Riipinen, and C. Mohr, “Insights into the molecular composition of semivolatile aerosols in the summertime central Arctic Ocean using FIGAERO-CIMS,” Environ. Sci.: Atmos. 1, 161–175 (2021). https://doi.org/10.1039/D0EA00023J

    Article  Google Scholar 

  13. T. E. Barret and R. J. Sheesley, “Year-round optical properties and source characterization of Arctic organic carbon aerosols on the North Slope Alaska,” J. Geophys. Res. Atmos. 122 (17), 9319–9331 (2017).

    Article  ADS  Google Scholar 

  14. M. M. Haque, K. Kawamura, D. K. Deshmukh, B. Kunwar, and Y. Kim, “Biomass burning is an important source of organic aerosols in interior Alaska,” J. Geophys. Res.: Atmos. 126 (12) (2021).

  15. M. A. Zawadowicz, K. Suski, J. Liu, M. Pekour, J. Fast, F. Mei, A. J. Sedlacek, S. Springston, Y. Wang, R. A. Zaveri, R. Wood, J. Wang, and J. E. Shilling, “Aircraft measurements of aerosol and trace gas chemistry in the eastern North Atlantic,” Atmos. Chem. Phys. 21 (10), 7983–8002 (2021).

    Article  ADS  Google Scholar 

  16. M. D. Willis, H. Bozem, D. Kunkel, A. K. Y. Lee, H. Schulz, J. Burkart, A. A. Aliabadi, A. B. Herber, W. R. Leaitch, and J. P. D. Abbatt, “Aircraft-based measurements of high Arctic springtime aerosol show evidence for vertically varying sources, transport and composition,” Atmos. Chem. Phys. 19 (1), 57–76 (2019).

    Article  ADS  Google Scholar 

  17. A. Hodzic, P. Campuzano-Jost, H. Bian, M. Chin, P. R. Colarco, D. A. Day, K. D. Froyd, B. Heinold, D. S. Jo, J. M. Katich, J. K. Kodros, B. A. Nault, J. R. Pierce, E. Ray, J. Schacht, G. P. Schill, J. C. Schroder, J. P. Schwarz, D. T. Sueper, I. Tegen, S. Tilmes, K. Tsigaridis, P. Yu, and J. L. Jimenez, “Characterization of organic aerosol across the global remote troposphere: A comparison of atom measurements and global chemistry models,” Atmos. Chem. Phys. 20 (8), 4607–4635 (2020).

    Article  ADS  Google Scholar 

  18. P. Q. Fu, K. Kawamura, J. Chen, B. Charriere, and R. Sempere, “Organic molecular composition of marine aerosols over the Arctic Ocean in summer: Contributions of primary emission and secondary aerosol formation,” Biogeosciences 10 (2), 653–667 (2013).

    Article  ADS  Google Scholar 

  19. S. K. R. Boreddya, M. M. Md.Haquea, K. Kawamuraa, P. Fua, and Y. Kim, “Homologous series of n-alkanes (C19–C35), fatty acids (C12–C32) and n-alcohols (C8–C30) in atmospheric aerosols from central Alaska: Molecular distributions, seasonality and source indices,” Atmos. Environ. 184, 87–97 (2018).

    Article  ADS  Google Scholar 

  20. S. K. Verma, K. Kawamura, D. K. Deshmukh, M. M. Haque, and C. M. Pavuluri, “Seasonal characteristics of biogenic secondary organic aerosols over Chichijima Island in the western North Pacific: Impact of biomass burning activity in East Asia,” J. Geophys. Res.: Atmos. 126 (12) (2021).

  21. G. G. Anokhin, P. N. Antokhin, M. Yu. Arshinov, V. E. Barsuk, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, V. S. Kozlov, M. V. Morozov, M. V. Panchenko, I. E. Penner, D. A. Pestunov, G. P. Sikov, D. V. Simonenkov, D. S. Sinitsyn, G. N. Tolmachev, D. V. Filippov, A. V. Fofonov, D. G. Chernov, V. S. Shamanaev, and V. P. Shmargunov, “OPTIK Tu-134 aicraft laboratory,” Opt. Atmos. Okeana 24 (9), 805–816 (2011).

    Google Scholar 

  22. N. G. Voronetskaya, G. S. Pevneva, A. K. Golovko, A. S. Kozlov, M. Yu. Arshinov, B. D. Belan, D. V. Simonenkov, and G. N. Tolmachev, “Hydrocarbon composition of tropospheric aerosol in the south of Western Siberia,” Atmos. Oceanic Opt. 27 (4), 547–557 (2014).

    Article  Google Scholar 

  23. S. R. Arnold, K. S. Law, C. A. Brock, J. L. Thomas, S. M. Starkweather, K. Salzen, A. Stohl, S. Sharma, M. T. Lund, M. G. Flanner, T. Petaja, H. Tanimoto, J. Gamble, J. E. Dibb, M. Melamed, N. Johnson, M. Fider, V.-P. Tynkkynen, A. Baklanov, S. Eckhardt, S. A. Monks, J. Browse, and H. Bozem, “Arctic air pollution: Challenges and opportunities for the next decade,” ELEMENTA: Sci. Atmos., No. 4, 16 (2016).

  24. K. S. Law and A. Stohl, “Arctic air pollution: Origins and impacts,” Science 315 (5818), 1537–1540 (2007).

    Article  ADS  Google Scholar 

  25. K. S. Law, A. Stohl, P. K. Quinn, C. A. Brock, J. F. Burkhart, J. D. Paris, G. Ancellet, B. Singh, A. Roiger, and H. Schlager, “Arctic air pollution,” Bull. Am. Meteorol. Soc. 95 (12), 1873–1895 (2014).

    Article  ADS  Google Scholar 

  26. A. Roiger, J.-L. Thomas, H. Schlager, K. S. Law, J. Kim, A. Schafler, B. Weinzierl, F. Dahlkotter, I. Krisch, L. Marelle, A. Minikin, J.-C. Raut, A. Reiter, M. Rose, M. Scheibe, P. Stock, R. Baumann, C. Clerbaux, M. George, T. Onishi, and J. Flemming, “Quantifying emerging local anthropogenic emissions in the Arctic region,” Bull. Am. Meteorol. Soc. 96 (3), 441–460 (2015).

    Article  ADS  Google Scholar 

  27. J. C. Schroder, P. Campuzano-Jost, D. A. Day, V. Shah, K. Larson, J. M. Sommers, A. P. Sullivan, T. Campos, J. M. Reeves, A. Hills, R. S. Hornbrook, N. J. Blake, E. Scheuer, H. Guo, D. L. Fibiger, E. E. McDuffie, P. L. Hayes, R. J. Weber, J. E. Dibb, E. C. Apel, L. Jaegle, S. S. Brown, J. A. Thornton, and J. L. Jimenez, “Sources and secondary production of organic aerosols in the northeastern United States during winter,” J. Geophys. Res.: Atmos. 123 (14), 7771–7796 (2018).

    Article  ADS  Google Scholar 

  28. B. G. Sherstyuko, “Inertance of surface temperature variations,” Rus. Meteorol. Hydrol. 42 (4), 213–221 (2017).

    Article  Google Scholar 

  29. M. Yu. Arshinov, B. D. Belan, S. B. Belan, N. G. Voronetskaya, A. K. Golovko, D. K. Davydov, G. A. Ivlev, A. S. Kozlov, S. B. Malyshkin, G. S. Pevneva, D. V. Simonenkov, and A. V. Fofonov, “Organic aerosol in air of Siberia and the Arctic. Part 2. Vertical distribution,” Opt. Atmos. Okeana. 30 (9), 733–739 (2017). https://doi.org/10.15372/AOO20170902

    Article  Google Scholar 

  30. M. Yu. Arshinov, V. G. Arshinova, B. D. Belan, D. K. Davydov, G. A. Ivlev, A. S. Kozlov, L. V. Kuibida, T. M. Rasskazchikova, D. V. Simonenkov, G. N. Tolmachev, and A. V. Fofonov, “Anomalous vertical distribution of organic aerosol over south of Western Siberia in September 2018,” Atmos. Ocean. Opt. 34 (5), 495–502 (2021).

    Article  Google Scholar 

  31. C. Zheng, Y. Wu, M. Ting, C. Orbe, X. Wang, and S. Tilmes, “Summertime transport pathways from different Northern Hemisphere regions into the Arctic,” J. Geophys. Res.: Atmos. 126 (4) (2021).

  32. M. Yu. Arshinov, B. D. Belan, N. G. Voronetskaya, A. K. Golovko, D. K. Davydov, A. S. Kozlov, G. S. Pevneva, D. V. Simonenkov, and A. V. Fofonov, “Organic aerosol in air of Siberia and the Arctic. Part 1. Geographic features and temporal dynamics,” Opt. Atmos. Okeana 30 (8), 716–722 (2017). https://doi.org/10.15372/AOO20170812

    Article  Google Scholar 

  33. Z. Chen, D. B. Millet, H. B. Singh, A. Wisthaler, E. C. Apel, E. L. Atlas, D. R. Blake, I. Bourgeois, S. S. Brown, J. D. Crounse, J. A. de Gouw, F. M. Flocke, A. Fried, B. G. Heikes, R. S. Hornbrook, T. Mikoviny, K.-E. Min, M. Muller, J. A. Neuman, D. W. O' Sullivan, J. Peischl, G. G. Pfister, D. Richter, J. M. Roberts, T. B. Ryerson, S. R. Shertz, C. R. Thompson, V. Treadaway, P. R. Veres, J. Walega, C. Warneke, R. A. Washenfelder, P. Weibring, and B. Yuan, “On the sources and sinks of atmospheric VOCs: An integrated analysis of recent aircraft campaigns over North America,” Atmos. Chem. Phys. 19 (14), 9097–9123 (2019).

    Article  ADS  Google Scholar 

  34. H. D. Alwe, D. B. Millet, X. Chen, J. D. Raff, Z. C. Payne, and K. Fledderman, “Oxidation of volatile organic compounds as the major source of formic acid in a mixed forest canopy,” Geophys. Rev. Lett. 46 (5), 2940–2948 (2019).

    Article  ADS  Google Scholar 

  35. W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, and B. R. T. Simoneit, “Sources of fine organic aerosol. 5. Natural gas home appliances,” Environ. Sci. Technol. 27 (13), 2736–2744 (1993).

    Article  ADS  Google Scholar 

  36. W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, and B. R. T. Simoneit, “Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks,” Environ. Sci. Technol. 27 (4), 636–651 (1993).

    Article  ADS  Google Scholar 

  37. M. A. Mazurek, G. R. Cass, and B. R. T. Simoneit, “Interpretation of high-resolution gas chromatography and high-resolution gas chromatography/mass spectrometry data acquired from atmospheric organic aerosol samples,” Aerosol Sci. Technol. 10, 408–420 (1989).

    Article  ADS  Google Scholar 

  38. W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, and B. R. T. Simoneit, “Sources of fine organic aerosol. 4. Particulate abrasion products from leaf surfaces of urban plants,” Environ. Sci. Technol. 27 (13), 2700–2711 (1993).

    Article  ADS  Google Scholar 

  39. V. A. Isidorov, Organic Chemistry of the Atmosphere (Khimiya, St. Petersburg, 2001) [in Russian].

    Google Scholar 

  40. E. E. Bray and E. D. Evans, “Distribution of n-paraffins as a clue to recognition of source beds,” Geochim. Cosmochim. Acta 22, 2–15 (1961).

    Article  ADS  Google Scholar 

  41. A. V. Herrera-Herrera, L. Leierer, M. Jambrina-Enriquez, R. Connolly, and C. Mallol, “Evaluating different methods for calculating the carbon preference index (CPI): Implications for palaeoecological and archaeological research,” Org. Geochem. 146, 104056 (2020).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study is based on the data obtained with the Tu-134 Optik flying laboratory being a part of the Atmosfera Common Use Center.

Funding

The work is supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-934).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Belan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshinova, V.G., Arshinov, M.Y., Belan, B.D. et al. Vertical Distribution of Alkanes in Atmospheric Aerosol in the Russian Arctic in September 2020. Atmos Ocean Opt 34, 577–585 (2021). https://doi.org/10.1134/S1024856021060312

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021060312

Keywords:

Navigation