Skip to main content
Log in

Chemical Composition of Atmospheric Aerosol in Arctic Regions in Summer 2021

  • SEA, RIVER AND LAKE ICE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The differences and similarity of the chemical composition (ions, trace elements, and polyaromatic hydrocarbons (PAHs)) of the near-water atmospheric aerosol collected in summer 2021 along the expedition routes of the R/V Akademik Mstislav Keldysh in the region of the Kara Sea (the second stage of cruise 83, from June 18 to July 8, 2021), in the Barents Sea, and in the Norwegian-Greenland Basin (cruise 84, from July 24 to August 26) are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Barrie, L.A., Fisher, D., and Koerner, R.M., Twentieth century trends in Arctic air pollution revealed by conductivity and acidity observations in snow and ice in the Canadian high Arctic, Atmos. Environ., 1985, vol. 19, vol. 2055–2063.

    Book  Google Scholar 

  2. Bond, T.C., Doherty, S.J., Fahey, D.W., Forster, P.M., Berntsen, T., DeAngelo, B.J., Flanner, M.G., Ghan, S., Karcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P.K., Sarofim, M.C., Schultz, M.G., et al., Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res.: Atmos., 2013, vol. 118, pp. 5380–5552. https://doi.org/10.1002/jgrd.5017

    Article  Google Scholar 

  3. Davidson, C.I., Harrington, J.R., Stephenson, M.J., Monaghan, M.C., Pudykiewicz, J., and Schell, W.R., Radioactive cesium from the Chernobyl accident in the Greenland Ice Sheet, Science, 1987, vol. 237, no. 4815, pp. 633–634. https://doi.org/10.1126/science.3603043

    Article  Google Scholar 

  4. Ekologicheskii monitoring: Metodicheskie ukazaniya k samostoyatel’noi rabote studentov po napravleniyu “Tekhnosfernaya bezopasnost’” (20.03.01) (Environmental Monitoring: Methodological Guides for Students’ Independent Work in the Field of "Technosphere Safety” (20.03.01)), Mavrin, R.M., Pademirova, D.A., and Kharlyamov, Eds., Naberezhnye Chelny: INEKA, 2015.

  5. Flint, M.V., Poyarkov, S.G., Rimsky-Korsakov, N.A., and Miroshnikov, A.Yu., Ecosystems of the Siberian Arctic Seas–2021: Ecosystem of the Kara Sea in the period of seasonal ice melting (cruise 83 of the R/V Akademik Mstislav Keldysh), Oceanology (Engl. Transl.), 2022, vol. 62, no. 1, pp. 133–135. https://doi.org/10.1134/S0001437022010052

  6. Ginzburg, A.S., Gubanova, D.P., and Minashkin, V.M., Influence of natural and anthropogenic aerosols on global and regional climate, Russ. J. Gen. Chem., 2009, vol. 52, no. 9, pp. 2062–2070.

    Article  Google Scholar 

  7. Golobokova, L.P., Khodzher, T.V., Chernov, D.G., Sidorova, O.R., Khuriganova, O.I., Onischuk, N.A., Zhuchenko, N.A., and Marinaite, I.I., Chemical composition of the near-surface atmospheric aerosol in Barentsburg (Svalbard) based on the long-term observations, Led Sneg, 2020a, vol. 60, no. 1, pp. 85–97. https://doi.org/10.31857/S2076673420010025

    Article  Google Scholar 

  8. Golobokova, L.P., Khodzher, T.V., Izosimova, O.N., Zenkova, P.N., Pochyufarov, A.O., Khuriganova, O.I., Onischuk, N.A., Marinaite, I.I., Pol’kin, V.V., Radionov, V.F., Sakerin, S.M., Lisitsin, A.P., and Shevchenko, V.P., Chemical composition of atmospheric aerosol in the Arctic region and adjoining seas along the routes of marine expeditions in 2018–2019, Atmos. Oceanic Opt., 2020b, vol. 33, no. 5, pp. 480–489.

    Article  Google Scholar 

  9. Gorshkov, A.G., Izosimova, O.N., Kustova, O.V., Marinaite, I.I., Galachyants, Y.P., Sinyukovich, V.N., and Khodzher, T.V., Wildfires as a source of PAHs in surface waters of background areas (Lake Baikal, Russia), Water, 2021, vol. 13, no. 2636, pp. 1–16. https://doi.org/10.3390/w13192636

    Article  Google Scholar 

  10. Group of experts on climate change impacts and adaptation for transport networks and nodes seventeenth session, Geneva, 2015. https://unece.org/7th-session-22. Accessed May 20, 2022.

  11. Heintzenberg, J., Hansson, H.C., and Lannefors, H., The chemical composition of Arctic haze at Ny-Ålesund, Spitsbergen, Tellus, 1981, vol. 33, no. 2, pp. 162–171.

    Article  Google Scholar 

  12. Humpert, M., IMO moves forward with ban of Arctic HFO but exempts some vessels until 2029, 2020. https:// www.highnorthnews.com/en/imo-moves-forward-ban-arctic-hfo-exempts-some-vessels-until-2029. Accessed May 20, 2022.

  13. Ivlev, L.S., Khimicheskii sostav i struktura atmosfernykh aerozolei (Chemical Composition and Structure of Atmospheric Aerosols), Leningrad: LGU, 1982.

    Google Scholar 

  14. Keene, W.C., Pszenny, A.A.P., Gallowa, J.N., and Hawley, M.E., Sea-salt corrections and interpretation of constituent ratios in marine precipitation, J. Geophys. Res., 1986, vol. 91, no. D6, pp. 6647–6658.

    Article  Google Scholar 

  15. Kravchishina, M.D., Klyuvitkin, A.A., Volodin, V.D., Glukhovets, D.I., Dubinina, E.O., Kruglinskii, I.A., Kudryavtseva, E.A., Matul, A.G., Novichkova, E.A., Politova, N.V., Savvichev, A.S., Silkin, V.A., and Starodymova, D.P., Systems research of sedimentation in the European Arctic during the 84th cruise of the research vessel Akademik Mstislav Keldysh, Oceanology (Engl. Transl.), 2022, vol. 62, no. 4, pp. 572–574. https://doi.org/10.1134/S0001437022040063

  16. Meleshko, V.P., Kattsov, V.M., Mirvis, V.M., Baidin, A.V., Pavlova, T.V., and Govorkova, V.A., Is there a link between Arctic Sea ice loss and increasing frequency of extremely cold winters in Eurasia and North America? Synthesis of current research, Russ. Meteorol Hydrol., 2018, vol. 43, no. 11, pp. 743–755. https://doi.org/10.3103/S1068373918110055

    Article  Google Scholar 

  17. Millero, F.J., Chemical Oceanography, Boca Raton, Fla., CRC Press, 2016.

    Book  Google Scholar 

  18. Morillo, E., Romero, A.S., Maqueda, C., Madrid, L., Ajmone-Marsan, F., Grčman, H., Davidson, C.M., Hursthouse, A.S., and Villaverde, J., Soil pollution by PAHs in urban soils: A comparison of three European cities, J. Environ. Monit. Assess., 2007, vol. 9, no. 9, pp. 1001–1008. https://doi.org/10.1039/B705955H

    Article  Google Scholar 

  19. Nadubovich, Yu.A., Polarization effects during flashes of optical radiation, radiant aurora forms and twilight, in Fizicheskie yavleniya v atmosphere vysokikh shirot (Physical Phenomena in the High-Latitude Atmosphere), Yakutsk: AN SSSR, 1977, pp. 40–49.

  20. Predel’no dopustimye kontsentratsii (PDK) zagryaznyayushchikh veshchestv v atmosfernom vozdukhe gorodskikh i sel’skikh poseleniyi: gigienicheskiye normativy, s izmeneniyami, utverzhdennye postanovleniem glavnogo gosudarstvennogo sanitarnogo vracha Rossiyskoy Federatsii 31.05.2018 no. 37 (Maximum Allowable Concentrations (MAC) of Pollutants in the Atmospheric Air of Urban and Rural Settlements: Hygienic Standards Approved by Decree of the Chief Health Officer of the Russian Federation, as Amended May 31, 2018, no. 37), Moscow: FTsGiE Rospotrebnadzora, 2019.

  21. Rusina, E.N. and Radionov, V.F., Estimation of “preindustrial” optical depth of the atmosphere in Arctic polar haze and recent contribution of anthropogenic emissions, Meteorol. Gidrol., 2002, no. 5, pp. 35–39.

  22. Sakerin, S.M., Golobokova, L.P., Kabanov, D.M., Kozlov, V.S., Pol’kin, V.V., Radionov, V.F., and Chernov, D.G., Comparison of average aerosol characteristics in neighboring Arctic regions, Atmos. Oceanic Opt., 2019, vol. 32, no. 1, pp. 33–40. https://doi.org/10.1134/S1024856019010147

    Article  Google Scholar 

  23. Semenov, V.A., Martin, T., Behrens, L.K., Latif, M., and Astaf’eva, E.S., Arctic sea ice area changes in CMIP3 and CMIP5, Led Sneg, 2017, vol. 57, no. 1, pp. 77–100. https://doi.org/10.15356/2076-6734-2017-1-77-107

    Article  Google Scholar 

  24. Shaw, G.E., The Arctic haze phenomenon, Bull. Am. Meteorol. Soc., 1995, vol. 76, no. 12, pp. 2403–2414.

    Article  Google Scholar 

  25. Shevchenko, V.P., Vliyanie aerozolei na okruzhayushchuyu sredu i morskoe osadkonakoplenie v Arktike (Aerosol Impact on the Environment and Marine Sediment Accumulation in the Arctic), Moscow: Nauka, 2006.

  26. Shevchenko, V.P., Lisitsyn, A.P., Vinogradova, A.A., Serova, V.V., and Stein, R., Aerosol fluxes on the Arctic Ocean surface and their role in the sedimentation and formation of the natural environment of the Arctic, in Opyt sistemnykh okeanologicheskikh issledovanii v Arktike (History of Systemic Oceanographic Research in the Arctic), Moscow: Nauchnyi mir, 2001, pp. 385-393.

  27. Shevchenko, V.P., Golobokova, L.P., Sakerin, S.M., Lisitsyn, A.P., Kabanov, D.M., Novigatskii, A.N., Panchenko, M.V., Politova, N.V., Polkin, V.V., Popovicheva, O.B., and Khodzher, T.V., Scattered sedimentation over the Barents Sea, in Sistema Barentseva morya (The Barents Sea System), Lisitsyn, A.P., Ed., Moscow: GEOS, 2021, pp. 127–142.

  28. Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., and Ngan, F., NOAA’s HYSPLIT atmospheric transport and dispersion modeling system, Bull. Am. Meteorol. Soc., 2015, vol. 96, pp. 2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1

    Article  Google Scholar 

  29. Wei, L., Mosley-Thompson, E., Gabrielli, P., Thompson, L.G., and Barbante, C., Synchronous deposition of volcanic ash and sulfate aerosols over Greenland in 1783 from the Laki eruption (Iceland), Geophys. Res. Lett., 2008, vol. 35, p. L16501. https://doi.org/10.1029/2008GL035117

    Article  Google Scholar 

  30. Xu, G. and Gao, Y., Atmospheric trace elements in aerosols observed over the Southern Ocean and coastal East Antarctica, Polar Res., 2014, vol. 33, p. 23973. https://doi.org/10.3402/polar.v33.23973

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the crew of the R/V Akademik Mstislav Keldysh for help in carrying out the expedition work and to the staff of the Air Resources Laboratory of the American National Oceanic and Atmospheric Administration (NOAA) for providing the opportunity to perform trajectory analysis using the HYSPLIT model.

Funding

This work was supported by the Russian Science Foundation, project no. 21-77-20025 “Atmospheric Aerosol in High-Latitude Regions of the World Ocean: Physicochemical Composition, Geographic Distribution, Main Sources, and Variability Factors.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Golobokova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golobokova, L., Kruglinsky, I., Pochufarov, A. et al. Chemical Composition of Atmospheric Aerosol in Arctic Regions in Summer 2021. Izv. Atmos. Ocean. Phys. 59 (Suppl 1), S70–S80 (2023). https://doi.org/10.1134/S000143382313008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143382313008X

Keywords:

Navigation