Skip to main content
Log in

Analysis of the Effect of the St. Petersburg Megalopolis on Precipitation and Wind for Validation of Numerical Weather Forecasts

  • OPTICAL MODELS AND DATABASES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Data on diurnal precipitation totals were retrieved by the gradient boosting method, as well as surface wind characteristics for St. Petersburg and 15 stations in Leningrad region for the period of 1994–2018. The following effects of the St. Petersburg megalopolis on the fields of the studied meteorological elements are identified: an increase in the amount of precipitation and a decrease in surface wind speed outside the megalopolis on the leeward-side territories and a decrease in surface wind speed in the megalopolis itself (city). The criteria for their detection on a specific day (time) are developed; and the quantitative estimates of the average values of these effects are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. G. E. Landsberg, Urban Climate (Gidrometeoizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  2. K. G. Rubinshtein and A. S. Ginzburg, “Estimation of air temperature and precipitation changes in large cities (by example of Moscow and New York),” Rus. Meteorol. Hydrol., No. 2, 20–26 (2003).

  3. E. G. Golovina, Peculirities of Anthropogenic Effect on the Meteorological Conditions in Polar Latitudes (Leningrad Hydrometeorological Institute, Leningrad, 1990) [in Russian].

    Google Scholar 

  4. A. J. Arnfield, “Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island,” Int. J. Climatol. 23 (1), 1–26 (2003).

    Article  Google Scholar 

  5. T. R. Oke, Boundary Layer Climate (Gidrometeoizdat, Leningrad, 1982) [in Russian].

    Google Scholar 

  6. N. E. Brusova, I. N. Kuznetsova, and M. I. Nakhaev, “Precipitation regime features in the Moscow region in 2008–2017,” Gidrometeorol. Issled. Prognozy, No. 1, 127–142 (2019).

    Google Scholar 

  7. P. Louka, S. E. Belcher, and R. G. Harrison, “Modified street canyon flow,” J. Wind Eng. Ind. Aerodyn. 74, 485–493 (1998).

    Article  Google Scholar 

  8. E. M. Ladokhina, K. G. Rubinshtein, and V. Yu. Tsepelev, “Identification of periods with maximum heat island intensity in St. Petersburg for the validation of numerical weather forecasts,” Gidrometeorol. Issled. Prognozy, No. 2, 109–125 (2020).

    Google Scholar 

  9. I. D. Stewart, “A systematic review and scientific critique of methodology in modern urban heat island literature,” Int. J. Climatol. 31 (2), 200–217 (2011).

    Article  Google Scholar 

  10. J. H. Friedman, “Greedy function approximation: A gradient boosting machine,” Ann. Statist. 29 (5), 1189–1232 (2001).

    Article  MathSciNet  Google Scholar 

  11. Y. Freund and R. E. Schapire, “Experiments with a new boosting algorithm,” in Proc. of the 13th Internat. Conf. on Machine Learning (1996), vol. 96, p. 1–9.

  12. A. A. Koshechkin, V. S. Andryushchenko, and A. V. Zamyatin, “A new method to missing value imputation for immunosignature data,” Sovrem. Tekhnol. Meditsine 11, 2, 19–24 (2019).

    Article  Google Scholar 

  13. O. G. Zolina and O. N. Bulygina, “Current climatic variability of extreme precipitation in Russia,” Fund. Prikl. Klimatol., No 1, 84–103 (2016).

  14. A. K. Gorshenin and O. P. Martynov, “Hybrid extreme gradient boosting models to impute the missing data in precipitation records,” Informatics Appl. 13 (3), 34–40 (2019).

    Google Scholar 

  15. https://xgboost.readthedocs.io/_/downloads/en/release_ 1.1.0/pdf/. Cited June 16, 2020.

  16. Climate of Leningrad, Ed. by Ts.A. Shver (Gidrometeoizdat, Leningrad, 1982) [in Russian].

    Google Scholar 

  17. V. P. Meleshko, A. V. Meshcherskaya, and E. I. Khlebnikova, Climate of Saint Petersburg and Its Measurements (GGO im. A.I. Voeikova, St. Petersburg, 2010) [in Russian].

  18. Climate of Moscow under Global Warming, Ed. by A.V. Kislov (MSU, Moscow, 2017) [in Russian].

    Google Scholar 

  19. H. E. Landsberg, “Atmospheric changes in a growing community (the Columbia, Maryland experience),” J. Urban Ecol. 4 (1), 53–81 (1979).

    Article  Google Scholar 

  20. B. P. Alisov, Climate Regions of USSR (OGIZ, Moscow, 1947) [in Russian].

    Google Scholar 

  21. F. W. Nicholas, M.S. Thesis (University of Maryland, Washington, DC, 1971).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. M. Ladokhina or K. G. Rubinshtein.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladokhina, E.M., Rubinshtein, K.G. Analysis of the Effect of the St. Petersburg Megalopolis on Precipitation and Wind for Validation of Numerical Weather Forecasts. Atmos Ocean Opt 34, 239–249 (2021). https://doi.org/10.1134/S102485602103009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485602103009X

Keywords:

Navigation