Monitoring of Atmospheric Parameters: 25 Years of the Tropospheric Ozone Research Station of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences

Abstract

We describe the current state and technical characteristics of Tropospheric Ozone Research (TOR) station, created 25 years ago to monitor atmospheric composition, basic meteorological variables, and other parameters. The multiyear observations showed that the air quality on the territory of Akademgorodok in Tomsk has been substantially degraded since the creation and development of the Special Economic Zone on its territory.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. 1

    WMO Global Atmosphere Watch (GAW) Implementation Plan: 2016–2023: Report N 228 (Geneva, Switzerland, WMO, 2017).

  2. 2

    C. D. Keeling, “The concentration and isotopic abundances of carbon dioxide in the atmosphere,” Tellus 12 (2), 200–203 (1960).

    ADS  Article  Google Scholar 

  3. 3

    E. Nisbet, “Earth monitoring: Cinderella science,” Nature (Gr. Brit.) 450 (7171), 789–790 (2007).

  4. 4

    Proceedings of the A.I. Voeikov Main Geophysical Observatory: Study Results in the periods of MGG and MGS (Gidrometeoizdat, Leningrad, 1962), no. 134 [in Russian].

  5. 5

    Proceedings of the A.I. Voeikov Main Geophysical Observatory: Turbulent Diffusion and Admixture Propagation in the Atmosphere (Gidrometeoizdat, Leningrad, 1963), no. 138 [in Russian].

  6. 6

    Guidance on the Air Pollution Control (Gidrometeoizdat, Leningrad, 1979) [in Russian].

  7. 7

    M. Kulmala, “Build a global Earth observatory,” Nature (Gr. Brit.) 553 (7686), 21–23 (2018).

  8. 8

    M. Yu. Arshinov, B. D. Belan, V. Zuev, E. Zuev, K. Kovalevskii, A. Ligotskii, E. Meleshkin, M. Panchenko, E. Pokrovskii, A. N. Rogov, D. Simonenkov, and G. N. Tolmachev, “TOR-station for monitoring of atmospheric parameters,” Atmos. Oceanic Opt. 7 (8), 580–584 (1994).

    Google Scholar 

  9. 9

    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, K. Kovalevskii, A), Plotnikov, E. Pokrovskii, T. K. Sklyadneva, and G. N. Tolmachev, “Automatic post for controlling the air quality,” Meteorol. Gidrol., No. 3, 110–118 (1999).

  10. 10

    18th WMO/IAEA Meeting of Experts on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2015): Report N 229 (WMO, Geneva, Switzerland, 2016).

  11. 11

    A. M. Zvyagintsev, N. S. Ivanova, G. M. Kruchenitskii, I. Yu. Shalygina, I. Demin, and E. Mokrov, “Ozone content on the Russian Federation territory in the second quarter of 2004,” Rus. Meteorol. Hydrol., No. 8, 71–76 (2004).

  12. 12

    D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys., B 75 (2), 261–265 (2002).

    ADS  Article  Google Scholar 

  13. 13

    B. D. Belan, K. Kovalevskii, A. Plotnikov, and T. K. Sklyadneva, “Time behavior of the ozone and nitrogen oxides in the surface atmospheric layer near Tomsk,” Atmos. Oceanic Opt. 11 (12), 1139–1141 (1998).

    Google Scholar 

  14. 14

    B. D. Belan and T. K. Sklyadneva, “Variation of tropospheric ozone concentration depending on solar radiation intensity,” Atmos. Oceanic Opt. 12 (8), 695–699 (1999).

    Google Scholar 

  15. 15

    B. D. Belan, T. K. Sklyadneva, and G. N. Tolmachev, “Results of ten-year monitoring of surface ozone near Tomsk,” Atmos. Ocean. Opt. 13 (9), 766–772 (2000).

    Google Scholar 

  16. 16

    M. Yu. Arshinov, B. D. Belan, A.P. Plotnikov, and G. N. Tolmachev, “Anomalously high concentration of near-ground ozone in winter near Tomsk,” Atmos. Ocean. Opt. 14 (4), 292–294 (2001).

    Google Scholar 

  17. 17

    P. N. Antokhin, M. Yu. Arshinov, B. D. Belan, S. B. Belan, T. K. Sklyadneva, and G. N. Tolmachev, “Many-year variability of ozone and aerosol near Tomsk and justification of the ten-year prediction of their yearly average concentrations,” Opt. Atmos. Okeana. 23 (9), 772–776 (2010).

    Google Scholar 

  18. 18

    B. D. Belan, Tropospheric Ozone (Publishing House of IAO SB RAS, Tomsk, 2010) [in Russian].

    Google Scholar 

  19. 19

    P. N. Antokhin, M. Yu. Arshinov, B. D. Belan, T. K. Sklyadneva, and G. N. Tolmachev, “Forecast of variations in ozone and aerosol concentrations based on the forecast for the 24th solar cycle,” Opt. Atmos. Okeana 25 (9), 778–783 (2012).

    Google Scholar 

  20. 20

    P. N. Antokhin and B. D. Belan, “Control of the dynamics of tropospheric ozone through the stratosphere,” Atmos. Ocean. Opt. 26 (3), 207–213 (2013).

    Article  Google Scholar 

  21. 21

    P. N. Antokhin, B. D. Belan, D. E. Savkin, and G. N. Tolmachev, “The comparison of different methods of statistical prediction of diurnal dynamics in the ground ozone concentration,” Opt. Atmos. Okeana. 26 (12), 1082–1089 (2013).

    Google Scholar 

  22. 22

    O. Yu. Antokhina, B. D. Belan, D. E. Savkin, and G. N. Tolmachev, “Dependence of the surface ozone concentration on the air temperature and conditions of atmospheric circulation in Western Siberia in the warm season (May–September),” Proc. SPIE—Int. Soc. Opt. Eng. 10 466, 11 (2017).

  23. 23

    B. D. Belan, D. E. Savkin, and G. N. Tolmachev, “Generation of ozone in the surface air layer versus air temperature,” Opt. Atmos. Okeana 30 (11), 971–979 (2017).

    Google Scholar 

  24. 24

    P. S. Monks, “A review of the observations and origins of the spring ozone maximum,” Atmos. Environ. 34 (21), 3545–3561 (2000).

    ADS  Article  Google Scholar 

  25. 25

    J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (John Wiley & Sons, New Jersey, 2016).

    Google Scholar 

  26. 26

    T. K. Sklyadneva, T. B. Zhuravleva, D. K. Davydov, and A. Kozlov, “Analysis of ground-based and satellite observations of atmospheric gas pollutants over the territory of Tomsk region during period of forest fires in 2012,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, 10035–94 (2016).

  27. 27

    J.-D. Paris, Ph. Ciais, Ph. Nedelec, A. Stohl, B. D. Belan, M. Yu. Arshinov, C. Carouge, G. Golitsyn, and I. G. Granberg, “New insights on the chemical composition of the Siberian air shed from the YAK-AEROSIB aircraft campaigns,” Bull. Am. Meteorol. Soc. 91 (5), 1–17 (2010).

    Article  Google Scholar 

  28. 28

    M. Yu. Arshinov, B. D. Belan, K. Kovalevskii, A. P. Plotnikov, T. K. Sklyadneva, and G. N. Tolmachev, “Long-term variability of tropospheric aerosol over Western Siberia,” Atmos. Ocean. Opt. 13 (6-7), 580–583 (2000).

    Google Scholar 

  29. 29

    M. Yu. Arshinov and B. D. Belan, “Diurnal behavior of the concentration of fine and ultrafine aerosol,” Atmos. Ocean. Opt. 13 (11), 909–916 (2000).

    Google Scholar 

  30. 30

    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. A. Ivlev, A. Kozlov, A. S. Kozlov, S. B. Malyshkin, D. Simonenkov, and P. N. Antokhin, “Nucleation bursts in the atmosphere over boreal zone in West Siberia. Part I. Classification and frequency,” Opt. Atmos. Okeana. 27 (9), 766–774 (2014).

    Google Scholar 

  31. 31

    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, A. Kozlov, A. S. Kozlov, and G. Arshinova, “Nucleation bursts in the atmosphere over boreal zone in West Siberia. Part II. Formation and growth rates of nanoparticles,” Opt. Atmos. Okeana. 28 (8), 730–737 (2015).

    Google Scholar 

  32. 32

    S. J. Smith, J. van Aardenne, Z. Klimont, R. J. Andres, A. Volke, and Arias S. Delgado, “Anthropogenic sulfur dioxide emissions: 1850–2005,” Atmos. Chem. Phys. 11 (3), 1101–1116 (2011).

    ADS  Article  Google Scholar 

  33. 33

    www.epa.gov/air-trends/sulfur-dioxide-trends. Cited April 25, 2018.

  34. 34

    Air Quality in Europe—2017 Report. European Environment Agency Reports No. 13 (Publications Office of the European Union, Luxembourg, 2017). https://doi.org/10.2800/850018

  35. 35

    P. N. Antokhin, O. Yu. Antokhina, M. Yu. Arshinov, B. D. Belan, D. K. Davydov, T. K. Sklyadneva, A. V. Fofonov, Motoki Sasakawa, and Toshinobu Machida, “The impact of atmospheric blocking in Western Siberia on a change in the methane concentration in summer,” Opt. Atmos. Okeana. 30 (5), 393–403 (2017).

    Google Scholar 

  36. 36

    A. E. Andrews, J. D. Kofler, M. E. Trudeau, J. C. Williams, D. H. Neff, K. A. Masarie, D. Y. Chao, D. R. Kitzis, P. C. Novelli, C. L. Zhao, E. J. Dlugokencky, P. M. Lang, M. J. Crotwell, M. L. Fischer, M. J. Parker, J. T. Lee, D. D. Baumann, A. R. Desai, C. O. Stanier, S. F. J. De Wekker, D. E. Wolfe, J. W. Munger, and P. P. Tans, “CO2, CO, and CH4 measurements from tall towers in the NOAA Earth system research laboratory’s global greenhouse gas reference network: Instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts,” Atmos. Meas. Tech. 7 (2), 647–687 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Federal Target Program (agreement no. 14.613.21.0082, unique project identifier RFMEF161317X0082).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to D. K. Davydov or B. D. Belan.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davydov, D.K., Belan, B.D., Antokhin, P.N. et al. Monitoring of Atmospheric Parameters: 25 Years of the Tropospheric Ozone Research Station of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences. Atmos Ocean Opt 32, 180–192 (2019). https://doi.org/10.1134/S1024856019020052

Download citation

Keywords:

  • monitoring
  • atmosphere composition
  • air quality