Skip to main content
Log in

Detection of Large Fluctuations in Ozone Content in the Middle Atmosphere during Sudden Stratospheric Warmings and Subpolar Latitudes of the Arctic

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The results of microwave radiometry studies of the ozone-content dynamics in the middle atmosphere above Peterhof during stratospheric warmings of two winters, 2015–2016 and 2016–2017, are presented. Ground-based observations employed mobile microwave ozone-measuring instrument (operating frequency is 110.8 GHz). The vertical ozone distribution in the altitude range of 22–60 km is estimated. The results are compared to satellite-borne data on the total ozone content, to vertical profiles of the ozone and temperature in the middle atmosphere, and to data from an ozone-measuring sounder. In the middle atmosphere above Peterhof, there have been significant variations (by several times) in the ozone content at heights of 40–60 km due to minor stratospheric warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Belikovich, V.V., The winter anomaly of the lower ionosphere and its nature, Geomagn. Aeron. (Engl. Transl.), 1998, vol. 38, no. 3, pp. 800–802.

  2. Bochkovskii, D.A., Virolainen, Ya.A., Kulikov, Yu.Yu., Marichev, V.N., Poberovskii, A.V., Ryskin, V.G., and Timofeev, Yu.M., Ground-based microwave monitoring of middle-atmosphere ozone above Peterhof and Tomsk during stratospheric warming in the winter of 2013–2014, Radiophys. Quantum Electron., 2016, vol. 59, no. 4, pp. 270–277. https://doi.org/10.1004/s11141-016-9702-x

    Article  Google Scholar 

  3. Chernigovskaya, M.A., Sutyrina, E.N., and Ratovskii, K.G., Meteorological effects of ionospheric disturbance over Irkutsk from vertical radio sounding data, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2014, vol. 11, no. 2, pp. 264–274.

    Google Scholar 

  4. Finger, F.G., Nagatani, R.M., Gelman, M.E., Long, C.S., and Miller, A.J., Consistency between variations of ozone and temperature in the stratosphere, Geophys. Res. Lett., 1995, vol. 22, no. 24, pp. 3477–3480. https://doi.org/10.1029/95gl02786

    Article  Google Scholar 

  5. Goncharenko, L.P., Coster, A.J., Plumb, R.A., and Domeisen, D.I.V., The potential role of stratospheric ozone in the stratosphere–ionosphere coupling during stratospheric warmings, Geophys. Res. Lett., 2012, vol. 39, L08 101. https://doi.org/10.1029/2012GL051261

    Article  Google Scholar 

  6. Goncharenko, L., Chau, J.L., Condor, P., Coster, A., and Benkevitch, L., Ionospheric effects of sudden stratospheric warming during moderate-to-high solar activity: Case study of January 2013, Geophys. Res. Lett., 2013, vol. 40, pp. 4982–4986. https://doi.org/10.1002/grl.50980

    Article  Google Scholar 

  7. Grigor’ev, G.I. and Trakhtengerts, V.Yu., Emission of internal gravity waves during operation of high-power heating facilities in the regime of time modulation of ionospheric currents, Geomagn. Aeron. (Engl. Transl.), 1999, vol. 39, no. 6, pp. 758–762.

  8. http://cds-espri.ipsl.fr/etherTypo/index.php?id=1663&L=1.

  9. http://disc.sci.gsfc.nasa.gov/aura/.

  10. http://exp-studies.tor.ec.gc.ca/cgi-bin/selectMap.

  11. https://www.arl.noaa.gov/hysplit/.

  12. Kazimirovsky, E.S., Coupling from below as a source of ionospheric variability: A review, Ann. Geophys., 2002, vol. 45, no. 1, pp. 1–29.

    Google Scholar 

  13. Krasil’nikov, A.A., Kulikov, Yu.Yu., Ryskin, V.G., and Shchitov, A.M., Microwave receivers for the diagnostics of trace gases of the Earth’s atmosphere, Izv. Ross. Akad. Nauk,Ser. Fiz., 2003, vol. 67, no. 12, pp. 1788–1792.

    Google Scholar 

  14. Kulikov, Yu.Yu., Krasil’nikov, A.A., and Ryskin, V.G., Microwave studies of the structure of the polar-latitude ozone layer during winter anomalous warming events in the stratosphere, Izv., Atmos. Ocean. Phys., 2002a, vol. 38, no. 2, pp. 158–166.

    Google Scholar 

  15. Kulikov, Yu.Yu., Krasil’nikov, A.A., and Ryskin, V.G., Ozone behavior in the upper atmosphere during the winter of 1999/2000 derived from simultaneous microwave observations in Nizhny Novgorod (56° N, 44° E) and Apatity (67° N, 35° E), Geomagn. Aeron. (Engl. Transl.), 2002b, vol. 42, no. 2, pp. 253–261.

  16. Kulikov, Yu.Yu., Ryskin, V.G., Krasil’nikov, A.A., Kukin, L.M., Microwave observations of ozone variability in the high-latitude stratosphere in the 2002/2003 winter, Radiophys. Quantum Electron., 2005, vol. 48, no. 2, pp. 120–126.

    Article  Google Scholar 

  17. Kulikov, Yu.Yu., Krasil’nikov, A.A., Kukin, L.M., Ryskin, V.G., Beloglazov, M.I., and Savchenko, V.R., On the behavior of stratospheric ozone in the Western Arctic during the 2003–2004 winter and spring, Izv., Atmos. Ocean. Phys., 2007a, vol. 43, no. 2, pp. 232–236.

    Article  Google Scholar 

  18. Kulikov, Y.Y., Krasilnikov, A.A., and Shchitov, A.M., New mobile ground-based microwave instrument for research of stratospheric ozone (some results of observations), in The Sixth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (MSMW'07)Proceedings, 2007b, vol. 1, pp. 62–66.

    Google Scholar 

  19. Kulikov, Yu.Yu. and Frolov, V.L., Influence of HF powerful radio waves on the ozone number density in the Earth’s atmosphere, in The Seventh International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (MSMW’10) Proceedings, 2010. https://doi.org/10.1109/MSMW.2010.5545979

  20. Kulikov, Yu.Yu., Grigor’ev, G.I., Krasil’nikov, A.A., and Frolov, V.L., Variations in the microwave radiation of the mesosphere during heating of the ionosphere with high-power radiowaves, Radiophys. Quantum Electron., 2012, vol. 55, nos. 1–2, pp. 51–58.

    Article  Google Scholar 

  21. Kulikov, Yu.Yu., Frolov, V.L., Grigor’ev, G.I., Demkin, V.M., Komrakov, G.P., Krasil’nikov, A.A., and Ryskin, V.G., Response of mesospheric ozone to the heating of the lower ionosphere by high-power HF radio emission, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 1, pp. 96–103.

  22. Laštovička, J., Forcing of the ionosphere by waves from below, J. Atmos. Sol.-Terr. Phys., 2006, vol. 68, pp. 479–497.

    Article  Google Scholar 

  23. Marichev, V.N., Matvienko, G.G., Lisenko, A.A. Bochkovskii, D.A., Kulikov, Yu.Yu., Krasil’nikov, A.A., Ryskin, V.G., and Demkin, V.M., Microwave and optical observation of ozone and temperature of the middle atmosphere during stratospheric warming at Western Siberia, Opt. Atmos. Okeana, 2014, vol. 27, no. 1, pp. 46–52.

    Google Scholar 

  24. Matvienko, G.G., Kulikov, Y.Y., Marichev, V.N., Bochkovsky, D.A., Krasilnikov, A.A., and Ryskin, V.G., Study of the influence of the stratospheric warming in January 2013 on the vertical structure of ozone and temperature in the middle atmosphere over Tomsk using microwave and lidar diagnostics, in ILRC 27 EPJ Web of Conferences 119, 2016, id 24002. https://doi.org/10.1051/epjconf/2016119224002

  25. Muscari, G., Pezzopane, M., Romaniello, V., de Zafra, R.L., Bianchi, C., and Fiocco, G., On the potential impact of large electron concentrations on mesospheric ozone, Mem. Soc. Astron. Ital., 2005, vol. 76, pp. 1007–1010.

    Google Scholar 

  26. Pakhomov, S.V. and Knyazev, A.K., Ozone in the mesosphere and electron density of the midlatitude D region, Geomagn. Aeron., 1988, vol. 28, no. 6, pp. 976–979.

    Google Scholar 

  27. Pedatella, N.M., Chau, J.L., Schmidt, H., Goncharenko, L.P., Stolle, C., Harvey, V.L., Funke, B., and Siddiqui, T., How sudden stratospheric warming affects the whole atmosphere, EOS, 2018, vol. 99, no. 6. https://doi.org/10.1029/2018EO092441

  28. Timofeev, Yu.M., Kostsov, V.S., Poberovskii, A.V., Kulikov, Yu.Yu., and Krasil’nikov, A.A., Measurements of the vertical profiles of ozone content over St. Petersburg using ground-based microwave instruments, Vestn. S.-Peterb. Univ., Ser. 4: Fiz., Khim., 2008, no. 4, pp. 44–53.

  29. Waters, J.W., Froidevaux, L., Harwood, R.S., et al., The earth observing system microwave limb sounder (EOS MLS) on the Aura satellite, IEEE Trans. Geosci. Remote Sens., 2006, vol. 44, pp. 1075–1092.

    Article  Google Scholar 

  30. Yasyukevich, A.S., Klimenko, M.V., Kulikov, Yu.Yu., Klimenko, V.V., Bessarab, F.S., Koren’kov, Yu.N., Marichev, V.N., Ratovskii, K.G., and Kolesnik, S.A., Changes in the middle and upper atmosphere parameters during the January 2013 sudden stratospheric warming, J. Sol.-Terr. Phys., 2018, vol. 4, no. 4, pp. 48–58. https://doi.org/10.12737/szf-43201807

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project nos. 15-05-04249 and 18-45-520009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. Yu. Kulikov or A. V. Poberovskii.

Additional information

Translated by N. Astafiev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, Y.Y., Poberovskii, A.V., Ryskin, V.G. et al. Detection of Large Fluctuations in Ozone Content in the Middle Atmosphere during Sudden Stratospheric Warmings and Subpolar Latitudes of the Arctic. Geomagn. Aeron. 60, 254–262 (2020). https://doi.org/10.1134/S0016793220020097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220020097

Navigation