Skip to main content

Daily Variation in the Radiation Extinction Coefficient due to Midges and Its Dependence on Meteorological Parameters of the Atmosphere in Background Summer Conditions of Western Siberia

Abstract

It is shown that the daily variation in the radiation extinction coefficient due to midges (RECM) has a statistically significant morning maximum at 09:00. This maximum is not connected with extremes of the air temperature or relative humidity. RECM maxima are observed at air temperatures of 12–17°C and relative air humidity of 60–80%. Correlations between RECM, air temperature, and relative humidity are statistically significant. The slope coefficient of the straight line in dependences of the midges-caused radiation extinction on the air temperature and relative humidity are –0.04 km–1/5°C and +0.04 km–1/20%, respectively. It is revealed that the RECM maxima are observed at winds of 2–4 m/s, directed from boggy forest areas, and minima, at winds of 1–4 m/s, directed from Ob River and dry, mixed, and boreal coniferous forests.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    A. A. Shtakel’berg, Bloodsucking Mosquitos of Palearctic (Publishing House of Akad. of Sci. of USSR, Moscow, Leningrad, 1937) [in Russian].

    Google Scholar 

  2. 2

    A. S. Monchadskii, Bloodsucking Two-Winged Flies—Midges (Publishing House of Akad. of Sci. of USSR, Moscow, Leningrad, 1952) [in Russian].

    Google Scholar 

  3. 3

    V. D. Patrusheva, Mosquitos of Siberia and Far East (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  4. 4

    A. G. Mirzaeva, Bloodsucking Mosquitos of Siberia and Far East (SB RAS, Novosibirsk, 1989) [in Russian].

    Google Scholar 

  5. 5

    M. W. Service, Mosquito Ecology: Field Sampling Methods (Elsevier Applied Science, London; New York, 1993).

    Book  Google Scholar 

  6. 6

    V. B. Chernyshev, Ecology of Insect (MSU, Moscow, 1996) [in Russian].

    Google Scholar 

  7. 7

    N. Becker, D. Petric, M. Zgomba, C. Boase, C. Dahl, M. Madon, and A. Kaiser, Mosquitoes and Their Control (Springer, Berlin; Heidelberg, 2003).

    Book  Google Scholar 

  8. 8

    A. I. Barashkova and A. D. Reshetnikov, Bloodsucking Two-Winged Flies of Agrocenosis in Yakutia and Protection of Farm Animals from Midges (APNI, Belgorod, 2015) [in Russian].

    Google Scholar 

  9. 9

    V. V. Vnukovskii, “Materials on fauna and biology of mosquitos (Culicidae) of Tomsk region,” Sib. Med. Zh., No. 2, 17–26 (1926).

  10. 10

    E. N. Pletnev, “Biology and ecology of mosquitos (Culicidae) of Tomsk region,” Arkhiv Naturalistov, No. 12, 1–27 (1926).

    Google Scholar 

  11. 11

    J. F. Reinert, “New classification for the composite genus Aedes (Diptera: Cilicidae: Aedini), elevation of subgenus Ochlerotatus to generic rank, reclassification of the other subgenera, and notes on certain subgenera and species,” J. Am. Mosq. Control Assoc. 3 (16), 175–188 (2000).

    Google Scholar 

  12. 12

    A. G. Mirzaeva, “About swarming of bloodsucking mosquitos of Avaritia subgenus of Culicoides genus (Ceratopogonidae),” Sib. Ekol. Zh. 7 (4), 419–423 (2000).

    Google Scholar 

  13. 13

    N. V. Red’kina, N. V. Ostroverkhova, and G. P. Ostroverkhova, “Fauna of bloodsucking mosquitos (Diptera: Culicidae) in Tomsk,” Vestn. Tom. Gos. Univ., No. 300 (II), 221–227 (2007).

  14. 14

    A. G. Mirzaeva, Yu. A. Smirnova, Yu. A. Yurchenko, and Yu. A. Kononova, “The study of the fauna and ecology of bloodsucking mosquitos (Diptera: Culicidae) of forest-steppe and steppe regions of Western Siberia,” Parazitologiya 41 (4), 253–267 (2007).

    Google Scholar 

  15. 15

    N. V. Poltoratskaya and A. G. Mirzaeva, “Detection of mosquitos Aedes sibiricus Danilov et Filippova seldom for Western Siberia, 1978 (Diptera, Culicidae),” Evraziat. Entomol. Zh., 12 (2), 144–146 (2013).

    Google Scholar 

  16. 16

    N. P. Mezenev, “External effects on the activity of mosquitos attacks and its diurnal dynamics,” Parazitologiya 5 (3), 254–260 (1971).

    Google Scholar 

  17. 17

    A. G. Mirzaeva and N. P. Glushchenko, “Factors of the dynamics of the population of bloodsucking mosquitos near Novosibirsk Scientific Center,” Evraziat. Entomol. Zh. 7 (3), 268–278 (2008).

    Google Scholar 

  18. 18

    A. D. Reshetnikov, Z. S. Prokop’ev, A. I. Barashkova, and K. E. Semenova, “Diurnal activity of midges components in north-eastern Yakutia,” Izv. Samar. Nauch. Tsentra Ros. Akad. Nauk 11 (1-2), 147–149 (2009).

    Google Scholar 

  19. 19

    A. G. Mirzaeva, “Bloodsucking two-winged flies of the north of Krasnoyarsk region. 1. Bloodsucking mosquitos,” Evraziat. Entomol. Zh. 16 (2), 158–172 (2017).

    Google Scholar 

  20. 20

    A. I. Barashkova, Doctoral Dissertation in Biology (All-Russian Scientific Research Institute of Fundamental and Applied Parasitology of Animals and Plants, Moscow, 2017).

  21. 21

    N. N. Shchelkanov and V. N. Uzhegov, “Estimates of a midge contribution to the extinction of optical radiation in background summer conditions of Western Siberia,” Atmos. Ocean. Opt. 30 (5), 446–450 (2017).

    Article  Google Scholar 

  22. 22

    R. F. Rakhimov, V. N. Uzhegov, E. V. Makienko, and Yu. A. Pkhalagov, “Obtaining the most probable value of the aerosol extinction coefficient of atmospheric haze from long-term series of observations along a near-ground horizontal path,” Atmos. Ocean. Opt. 18 (7), 506–513 (2005).

    Google Scholar 

  23. 23

    N. N. Shchelkanov, “A generalized method for construction of linear regression and its application to the development of single-parameter aerosol extinction models,” Atmos. Ocean. Opt. 18 (1-2), 77–81 (2005).

    Google Scholar 

  24. 24

    N. N. Shchelkanov, “Methods for calculation of random errors of the parameters of environment from experimental data,” Opt. Atmos. Okeana 25 (9), 815–821 (2012).

    Google Scholar 

  25. 25

    N. N. Shchelkanov, “Methods for correcting the atmospheric aerosol optical depth along horizontal and slant paths,” Atmos. Ocean. Opt. 18 (11), 922–924 (2005).

    Google Scholar 

  26. 26

    N. N. Shchelkanov, “Methods for correction of the aerosol optical thickness of the atmosphere in the wavelength range 0.4 to 12 µm,” Proc. SPIE—Int. Soc. Opt. Eng. 6160, Part 1, 5 (2005).

  27. 27

    http://lop.iao.ru/RU/fon/meteo/ (Cited March 20, 2018).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. N. Shchelkanov.

Additional information

Translated by S. Ponomareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shchelkanov, N.N. Daily Variation in the Radiation Extinction Coefficient due to Midges and Its Dependence on Meteorological Parameters of the Atmosphere in Background Summer Conditions of Western Siberia. Atmos Ocean Opt 32, 80–84 (2019). https://doi.org/10.1134/S1024856019010159

Download citation

Keywords:

  • atmosphere
  • extinction coefficient
  • midges
  • daily course
  • summer
  • meteorological parameters
  • Western Siberia