Skip to main content

Broadening and Shift of the Methane Absorption Lines in the 11000–11400 cm–1 Region

Abstract

Absorption spectra of methane in the 11000–11400 cm–1 spectral region were recorded with an IFS-125M Fourier spectrometer at pressures from 11 to 100 mbar, a room temperature, and a spectral resolution of 0.03 cm–1. A multipass cell 60 cm long with 44 passes provided a total path length of 2640 cm and threshold sensitivity to absorption of about 10–8 cm–1. Line centers, intensities, self-broadening, and selfshift coefficients of methane lines were determined by fitting Voigt profile parameters.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. Sussmann, F. Forster, M. Rettinger, and N. Jones, “Strategy for high-accuracy-and-precision retrieval of atmospheric methane from the mid-infrared FTIR network,” Atmos. Meas. Tech. 4, 1943–1064 (2011).

    Article  Google Scholar 

  2. 2.

    E. Karkoschka and M. G. Tomasko, “Methane absorption coefficients for the jovian planets from laboratory, Huygens, and HST data,” Icarus 205, 674–694 (2010).

    ADS  Article  Google Scholar 

  3. 3.

    G. A. Voth, R. A. Marcus, and A. H. Zewail, “The highly excited C-H stretching states of CHD3, CHT3, CH3D,” J. Chem. Phys. 81, 5494–5507 (1984).

    ADS  Article  Google Scholar 

  4. 4.

    J. W. Perry, D. J. Moll, A. Kuppermann, and A. H. Zewail, “High-energy overtone spectroscopy of some methanes,” J. Chem. Phys. 82, 1195–1211 (1985).

    ADS  Article  Google Scholar 

  5. 5.

    K. Soraas, Z. Lin, and J. P. Reilly, “High resolution study of methane’s 3ν1 + ν3 vibrational overtone band,” J. Chem. Phys. 100, 7916–7926 (1994).

    ADS  Article  Google Scholar 

  6. 6.

    J. S. Margolis and K. Fox, “Infrared absorption spectrum of CH4 at 9050 cm–1,” J. Chem. Phys. 49, 2451–2452 (1968).

    ADS  Article  Google Scholar 

  7. 7.

    K. Fox and D. E. Jennings, “Measurements of nitrogen-, hydrogen-and helium broadened widths of methane lines at 9030–9120 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 33 (3), 275–280 (1985).

    ADS  Article  Google Scholar 

  8. 8.

    K. Fox, D. E. Jennings, E. A. Stern, and R. Hubbard, “Measurements of argon-, helium-, hydrogen-, and nitrogen-broadened widths of methane lines near 9000 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 39 (6), 473–476 (1988).

    ADS  Article  Google Scholar 

  9. 9.

    K. Fox and D. E. Jennings, “Spectral shifts of methane lines in collisions with hydrogen, helium, nitrogen and argon,” J. Quant. Spectrosc. Radiat. Transfer 42 (3), 201–206 (1989).

    ADS  Article  Google Scholar 

  10. 10.

    K. Singh and J. J. O’Brien, “Measurement of pressurebroadening and lineshift coefficients at 77 and 296 k of methane lines in the 727 nm band using intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 52 (1), 75–87 (1994).

    ADS  Article  Google Scholar 

  11. 11.

    C. E. Keffer, C. P. Conner, and W. H. Smith, “Pressure broadening of methane lines in the 6190 Å and 6825 Å bands at room and low temperatures,” J. Quant. Spectrosc. Radiat. Transfer 35 (6), 495–499 (1986).

    ADS  Article  Google Scholar 

  12. 12.

    B. B. Radak, J. I. Lunine, D. M. Hunten, and G. H. Atkinson, “The intensity and pressure broadening of the 681.884 nm methane absorption line at low temperatures determined by intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 52 (6), 809–818 (1994).

    ADS  Article  Google Scholar 

  13. 13.

    P. V. Cvijin, W. K. Wells, I. Mendas, J. K. Delaney, J. I. Lunine, D. M. Hunten, and G. H. Atkinson, “Determination of the intensity and pressure broadening of the 619.68 nm methane overtone absorption line at low temperatures using intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 49 (6), 639–650 (1993).

    ADS  Article  Google Scholar 

  14. 14.

    A. D. Bykov, O. V. Naumenko, A. M. Pshenichnikov, L. N. Sinitsa, and A. P. Shcherbakov, “An expert system for identification of lines in vibrational-rotational spectra,” Opt. Spectrosc. 94, 528–537 (2003).

    ADS  Article  Google Scholar 

  15. 15.

    L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).

    ADS  Article  Google Scholar 

  16. 16.

    C. Boussin, L. Regalia, J.-J. Plateaux, and A. Barbe, “Line intensities and self-broadening coefficients for methane lines between 5500 and 6180 cm–1. Retrieved with a multispectrum fitting technique,” J. Mol. Spectrosc. 191, 381–383 (1998).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. N. Sinitsa.

Additional information

Original Russian Text © V.I. Serdyukov, L.N. Sinitsa, A.D. Bykov, A.P. Shcherbakov, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serdyukov, V.I., Sinitsa, L.N., Bykov, A.D. et al. Broadening and Shift of the Methane Absorption Lines in the 11000–11400 cm–1 Region. Atmos Ocean Opt 31, 153–156 (2018). https://doi.org/10.1134/S1024856018020136

Download citation

Keywords

  • methane
  • Fourier spectrometer
  • absorption
  • line strength
  • halfwidth
  • line shift