Skip to main content
Log in

Effect of Helium on the Raman Spectrum of Methane in the 2500–3300 cm−1 Range

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The peak positions and halfwidths of the Q-branch of the ν1 band and the ratios of intensities of the Q-branches of ν3 and 2ν2 bands of methane are measured in a methane–helium mixture at different pressures and concentrations. An empirical model is developed for estimation of the He concentration in a methane-containing medium from measurements of the above parameters. The error in the He concentration is found to be less than 1% when using the ν1 band halfwidth. The paths of improvement of this technique and enhancement of its accuracy are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. Knebl, D. Yan, J. Popp, and T. Frosch, “Fiber enhanced Raman gas spectroscopy,” Trends Anal. Chem. 103, 230–238 (2018).

    Article  Google Scholar 

  2. P. Wang, W. Chen, F. Wan, J. Wang, and J. Hu, “Cavity-enhanced Raman spectroscopy with optical feedback frequency-locking for gas sensing,” Opt. Express 27 (23), 33312–33325 (2019).

    Article  ADS  Google Scholar 

  3. S. Schluter, F. Krischke, N. Popovska-Leipertz, T. Seeger, G. Breuer, C. Jeleazcov, J. Schuttler, and A. Leipertz, “Demonstration of a signal enhanced fast raman sensor for multi-species gas analyses at a low pressure range for anesthesia monitoring,” J. Raman Spectrosc. 46 (8), 708–715 (2015).

    Article  ADS  Google Scholar 

  4. C. Wen, X. Huang, and C. Shen, “Multiple-pass-enhanced multiple-point gas Raman analyzer for industrial process control applications,” J. Raman Spectrosc. 51 (10), 2046–2052 (2020).

    Article  ADS  Google Scholar 

  5. D. V. Petrov, I. I. Matrosov, A. R. Zaripov, and A. S. Maznoy, “Application of Raman spectroscopy for determination of syngas composition,” Appl. Spectrosc. 74 (8), 948–953 (2020).

    Article  ADS  Google Scholar 

  6. M. A. Buldakov, B. V. Korolev, I. I. Matrosov, D. V. Petrov, and A. A. Tikhomirov, “Raman gas analyzer for determining the composition of natural gas,” J. Appl. Spectrosc. 80 (1), 124–128 (2013).

    Article  ADS  Google Scholar 

  7. D. V. Petrov and I. I. Matrosov, “Raman Gas Analyzer (RGA): Natural gas measurements,” Appl. Spectrosc. 70 (10), 1770–1776 (2016).

    Article  ADS  Google Scholar 

  8. Y. Gao, L.-K. Dai, H.-D. Zhu, Y.-L. Chen, and L. Zhou, “Quantitative analysis of main components of natural gas based on Raman spectroscopy,” Chinese J. Anal. Chem. 47 (1), 67–76 (2019).

    Article  Google Scholar 

  9. E. Grynia and P. J. Griffin, “Helium in natural gas—occurrence and production,” J. Nat. Gas Eng. 1 (2), 163–215 (2017).

    Article  Google Scholar 

  10. D. Pieroni, J. M. Hartmann, F. Chaussard, X. Michaut, T. Gabard, R. Saint-Loup, H. Berger, and J. P. Champion, “Experimental and theoretical study of line mixing in methane spectra. III. The Q branch of the Raman ν1 band,” J. Chem. Phys. 112 (3), 1335–1343 (2000).

    Article  ADS  Google Scholar 

  11. J. Zhang, S. Qiao, W. Lu, Q. Hu, S. Chen, and Y. Liu, “An equation for determining methane densities in fluid inclusions with Raman shifts,” J. Geochem. Explor. 171, 20–28 (2016).

    Article  Google Scholar 

  12. F. Lin, R. J. Bodnar, and S. P. Becker, “Experimental determination of the Raman CH4 symmetric stretching (ν1) band position from 1–650 bar and 0.3–22°C: Application to fluid inclusion studies,” Geochim. Cosmochim. Acta 71 (15), 3746–3756 (2007).

    Article  ADS  Google Scholar 

  13. L. Shang, I.-M. Chou, R. C. Burruss, R. Hu, and X. Bi, “Raman spectroscopic characterization of CH4 density over a wide range of temperature and pressure,” J. Raman Spectrosc. 45 (8), 696–702 (2014).

    Article  ADS  Google Scholar 

  14. J. C. Seitz, J. D. Pasteris, and I.-M. Chou, “Raman spectroscopic characterization of gas mixtures; I. Quantitative composition and pressure determination of CH4, N2 and their mixtures,” Am. J. Sci. 293 (4), 297–321 (1993).

    Article  ADS  Google Scholar 

  15. J. Herranz and B. P. Stoicheff, “High-resolution Raman spectroscopy of gases. Part XVI. The ν3 Raman band of methane,” J. Mol. Spectrosc. 10 (1-6), 448–483 (1963).

    Article  ADS  Google Scholar 

  16. J. E. Lolck and A. G. Robiette, “A theoretical model for the interacting upper states of the ν1, ν3, 2ν2, ν2 + ν4, and 2ν4 bands in methane,” J. Mol. Spectrosc. 88 (1), 14–29 (1981).

    Article  ADS  Google Scholar 

  17. D. V. Petrov, “Pressure dependence of peak positions, half widths, and peak intensities of methane raman bands (ν2, 2ν4, ν1, ν3, and 2ν2),” J. Raman Spectrosc. 48 (11), 1426–1431 (2017).

    Article  ADS  Google Scholar 

  18. W. Lu, I.-M. Chou, R. C. Burruss, and Y. Song, “A unified equation for calculating methane vapor pressures in the CH4–H2O system with measured Raman shifts,” Geochim. Cosmochim. Acta 71 (16), 3969–3978 (2007).

    Article  ADS  Google Scholar 

  19. H. S. Brunsgaard, R. W. Berg, and E. H. Stenby, “How to determine the pressure of a methane-containing gas mixture by means of two weak Raman bands, ν3 and 2ν2,” J. Raman Spectrosc. 33 (3), 160–164 (2002).

    Article  ADS  Google Scholar 

  20. M. Wang, W. Lu, L. Li, and S. Qiao, “Pressure and temperature dependence of the Raman peak intensity ratio of asymmetric stretching vibration (ν3) and asymmetric bending overtone (2ν2) of methane,” Appl. Spectrosc. 68 (5), 536–540 (2014).

    Article  ADS  Google Scholar 

  21. D. V. Petrov, I. I. Matrosov, and A. S. Tanichev, “Intensities of 2ν4 and 2ν2 methane Raman bands as a function of pressure,” Proc. SPIE—Int. Soc. Opt. Eng. 11560, 115600 (2020).

Download references

Funding

The research was funded by RFBR and Tomsk region, project number 19-42-700006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Tanichev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanichev, A.S., Petrov, D.V., Matrosov, I.I. et al. Effect of Helium on the Raman Spectrum of Methane in the 2500–3300 cm−1 Range. Atmos Ocean Opt 34, 395–399 (2021). https://doi.org/10.1134/S1024856021050225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021050225

Keywords:

Navigation