Advertisement

Atmospheric and Oceanic Optics

, Volume 24, Issue 2, pp 123–132 | Cite as

Comparative analysis of spectroscopic methods for remote diagnostics of bioaerosols

  • M. M. Makogon
Spectroscopy of Ambient Medium

Abstract

A concise description of physical processes, which can be used for remote diagnostics of bioaerosols, are described concisely. Based on the spectroscopic information on a series of bioaerosols, the sensitivity of measurements is estimated, and some indicative results are given. The conclusion about prospects and opportunities of remote determination of qualitative structure and quantitative contents of bioaerosols in the atmosphere is made. The consideration is limited by optical and near-IR spectral ranges.

Keywords

Lidar Raman Scattering Oceanic Optic Laser Induce Breakdown Spectroscopy Discriminant Function Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. H. Woodruff, T. G. Spiro, and C. Gilvarg, “Raman Spectroscopy in vivo: Evidence on the Structure of Dipicolinate in Intact Spores of Bacillus Megaterium,” Biochem. Biophys. Res. Commun. 58, 197–203 (1974).CrossRefGoogle Scholar
  2. 2.
    M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman Spectra of Pyridine Adsorbed at a Silver Electrode,” Chem. Phys. Lett. 26, 163–166 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    S. Chadha, R. Manoharan, P. Moenne-Loccoz, W. H. Nelson, W. L. Peticolas, and J. F. Sperry, “Comparison of the UV Resonance Raman Spectra of Bacteria, Bacterial Cell Walls, and Ribosomes Excited in the Deep UV,” Appl. Spectrosc. 47, 38–43 (1993).ADSCrossRefGoogle Scholar
  4. 4.
    R. Manoharan, E. Ghiamati, S. Chadha, W. H. Nelson, and J. F. Sperry, “Effect of Cultural Conditions of Deep UV Resonance Raman Spectra of Bacteria,” Appl. Spectrosc. 47, 2145–2150 (1993).ADSCrossRefGoogle Scholar
  5. 5.
    W. H. Nelson, R. Manoharan, and J. F. Sperry, “UV Resonance Raman Studies of Bacteria,” Appl. Spectrosc. Rev. 27, 67–124 (1992).ADSCrossRefGoogle Scholar
  6. 6.
    E. Ghiamati, R. Manoharan, W. H. Nelson, and J. F. Sperry, “UV Resonance Raman Spectra of Bacillus Spores,” Appl. Spectrosc. 46, 357–364 (1992).ADSCrossRefGoogle Scholar
  7. 7.
    E. C. Lopez-Diez and R. Goodacre, “Characterization of Microorganisms Using UV Reseonance Raman Spectroscopy and Chemometrics,” Anal. Chem. 76, 585–591 (2004).CrossRefGoogle Scholar
  8. 8.
    R. M. Jarvis and R. Goodacre, “Ultra-Violet Resonance Raman Spectroscopy for Rapid Discrimination of Urinary Tract Infection Bacteria,” FEMS Microbiol. Lett. 232, 127–132 (2004).CrossRefGoogle Scholar
  9. 9.
    S. Chadha, W. H. Nelson, and J. F. Sperry, “Ultra-Violet Micro-Raman Spectrograph for the Detection of Small Numbers of Bacterial Cells,” Rev. Sci. Instrum. 64, 3088–3093 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    K. A. Britton, R. A. Dalterio, W. H. Nelson, D. Britt, and J. F. Sperry, “Ultraviolet Resonance Raman Spectra of Escherichia Coli with 222.5–251.0 nm Pulsed Laser Excitation,” Appl. Spectrosc. 42, 782–788 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    Q. Wu, T. Hamilton, W. H. Nelson, S. Elliott, J. F. Sperry, and M. Wu, “UV Raman Spectral Intensities of E. Coli and Other Bacteria Excited at 228.9, 244.0, and 248.2 nm,” Anal. Chem. 73, 3432–3440 (2001).CrossRefGoogle Scholar
  12. 12.
    R. Manoharan, E. Ghiamati, S. Chadha, W. H. Nelson, and J. F. Sperry, “Effect of Cultural Conditions of Deep UV Resonance Raman Spectra of Bacteria,” Appl. Spectrosc. 47, 2145–2150 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    A. Harriman, “Photophysical Processes in Condensed Phases,” in Photochemistry, Vol. 33, Ed. by A. Gilbert (the Royal Society of Chemistry, London, 2002), pp. 13–50.Google Scholar
  14. 14.
    K. Ya. Kondrat’ev and D. V. Pozdnyakov, Optical Properties of Natural Waters and Remote Probing of Phytoplankton (Nauka, Leningrad, 1988) [in Russian].Google Scholar
  15. 15.
    J. Gelbwach and M. Birnbaum, “Fluorescence of Atmospheric Aerosols and Lidar Implication,” Appl. Opt. 12, 2442–2447 (1973).ADSCrossRefGoogle Scholar
  16. 16.
    R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984; Mir, Moscow, 1987).Google Scholar
  17. 17.
    M. L. Laucks, G. Roll, G. Schweiger, and E. J. Davis, “Physical and Chemical (Raman) Characterization of Bioaerosols-Pollen,” J. Aerosol Sci. 31, 307–319 (2000).CrossRefGoogle Scholar
  18. 18.
    C. E. Alupoaei and L. H. Garcia-Rubio, “Growth Behavior of Microorganisms Using UV-Vis Spectroscopy: Escherichia Coli,” Biotechnol. Bioeng. 86, 163–167 (2004).CrossRefGoogle Scholar
  19. 19.
    C. E. Alupoaei, J. A. Olivares, and L. H. Garcia-Rubio, “Quantitative Spectroscopy Analysis of Prokaryotic Cells: Vegetative Cells and Spores,” Biosensor. Bioelect. 19, 893–903 (2004).CrossRefGoogle Scholar
  20. 20.
    S. C. Hill, R. G. Pinnick, P. Nachman, G. Chen, R. K. Chang, M. W. Mayo, and G. L. Fernandez, “Aerosol-Fluorescence Spectrum Analyzer: Real-Time Measurement of Emission Spectra of Airborne Biological Particles,” Appl. Opt. 34, 7149–7155 (1995).ADSCrossRefGoogle Scholar
  21. 21.
    Y. L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, and J. R. Bottiger, “Single-Shot Fluorescence Spectra of Individual Micrometer-Sized Bio-Aerosols Illuminated by a 351- or a 266-nm Ultraviolet Laser,” Opt. Lett. 24, 116–118 (1999).ADSCrossRefGoogle Scholar
  22. 22.
    S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, and G. Feather, “Real-Time Measurement of Fluorescence Spectra from Single Airborne Biological Particles,” Field Anal. Chem. Tech. 3, 221–239 (1999).CrossRefGoogle Scholar
  23. 23.
    J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. P. Choulas, and M. Seaver, “Continuous, Rapid Biological Aerosol Detection with the Use of UV Fluorescence: Outdoor Test Results,” Field Anal. Chem. Tech. 3, 249–259 (1999).CrossRefGoogle Scholar
  24. 24.
    J. D. Eversole, W. K. Cary, C. S. Scotto, R. Pierson, M. Spence, and A. J. Campillo, “Continuous Bioaerosol Monitoring Using UV Excitation Fluorescence: Outdoor Test Results,” Field Anal. Chem. Tech. 5, 205–212 (2001).CrossRefGoogle Scholar
  25. 25.
    Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single-Particle Fluorescence Spectrometer for Ambient Aerosols,” Aerosol Sci. Tech. 37, 628–639 (2003).CrossRefGoogle Scholar
  26. 26.
    P. Nachman, G. Chen, R. G. Pinnick, S. C. Hill, R. K. Chang, M. W. Mayo, and G. L. Fernandez, “Conditional-Sampling Spectrograph Detection System for Fluorescence Measurements of Individual Airborne Biological Particles,” Appl. Opt. 35, 1069–1076 (1996).ADSCrossRefGoogle Scholar
  27. 27.
    G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, and R. K. Chang, “Conditional-Firing Aerosol-Fluorescence Spectrum Analyzer for Individual Airborne Particles with Pulsed 266-nm Laser Excitation,” Opt. Lett. 21, 1307–1309 (1996).ADSCrossRefGoogle Scholar
  28. 28.
    P. H. Kaye, J. E. Barton, E. Hirst, and J. M. Clark, “Simultaneous Light Scattering and Intrinsic Fluorescence Measurement for the Classification of Airborne Particles,” Appl. Opt. 39, 3738–3745 (2000).ADSCrossRefGoogle Scholar
  29. 29.
    V. Sivaprakasam, A. L. Huston, C. Scotto, and J. D. Eversole, “Multiple UV Wavelength Excitation and Fluorescence of Bio-Aerosols,” Opt. Express 12, 4457–4466 (2004).ADSCrossRefGoogle Scholar
  30. 30.
    Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, D. J. Rader, T. J. O’Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of Bioaerosols Using Multiwavelength UV Fluorescence Spectroscopy,” Aerosol Sci. Tech. 30, 186–201 (1999).CrossRefGoogle Scholar
  31. 31.
    S. C. Hill, R. G. Pinnick, and P. Nachman, “Conditional-Sampling Spectrograph Detection System for Fluorescence Measurements of Individual Airborne Biological Particles,” Appl. Opt. 35, 1069–1076 (1996).ADSCrossRefGoogle Scholar
  32. 32.
    K. L. Schroder, P. J. Hargis, Jr., R. L. Schmitt, D. J. Rader, and I. R. Shokair, “Development of an Unattended Ground Sensor for Ultraviolet Laser Induced Fluorescence Detection of Biological Agent Aerosols,” Proc. SPIE 3855, 82–91 (1999).ADSCrossRefGoogle Scholar
  33. 33.
    L. Leblanc and E. Dufour, “Monitoring the Identity of Bacteria Using Their Intrinsic Fluorescence,” FEMS Microbiol. Lett. 211, 147–153 (2002).CrossRefGoogle Scholar
  34. 34.
    R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, and R. K. Chang, “Aerosol Fluorescence Spectrum Analyzer for Rapid Measurement of Single Micrometersized Airborne Biological Particles,” Aerosol Sci. Tech. 28, 95–104 (1998).CrossRefGoogle Scholar
  35. 35.
    P. Jonsson, F. Kullander, P. Wüsterby, M. Tiihonen, and M. Lindgren, “Detection of Fluorescence Spectra of Individual Bioaerosol Particles,” Proc. SPIE 5990, 59900M (2005).ADSCrossRefGoogle Scholar
  36. 36.
    L. T. Sukhov, Laser Spectral Analysis (Nauka, Novosibirsk, 1990) [in Russian].Google Scholar
  37. 37.
    Yu. E. Geints, A. A. Zemlyanov, V. E. Zuev, A. M. Kabanov, and V. A. Pogodaev, Nonlinear Optics of Atmospheric Aerosols (SO RAN, Novosibirsk, 1999) [in Russian].Google Scholar
  38. 38.
    Optical Discharge in Aerosols, Ed. by Yu. D. Kopytin, Yu. M. Sorokin, A. M. Skripkin, N. N. Belov, and V. I. Bukatyi (Nauka, Novosibirsk, 1990) [in Russian].Google Scholar
  39. 39.
    R. S. Harmon, F. C. De Lucia, C. A. Munson, A. W. Miziolek, and K. L. McNesby, “Laser-Induced Breakdown Spectroscopy (LIBS)-an Emerging Field-Portable Sensor Technology for Real-Time Chemical Analysis for Military, Security and Environmental Applications,” Proc. SPIE 5994, 59940K (2005).CrossRefGoogle Scholar
  40. 40.
    V. E. Zuev, V. A. Banakh, and V. V. Pokasov, Optics of Turbulent Atmosphere (Gidrometeoizdat, Leningrad, 1988) [in Russian].Google Scholar
  41. 41.
    J. P. Wolf, “Detection and Identification of Bacteria in Air Using Femtosecond Spectroscopy,” in Analysis and Control of Ultrafast Photoinduced Reactions (Springer, Berlin, Heidelberg, 2007), pp. 807–828.Google Scholar
  42. 42.
    H. L. Xu, G. M’ejean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote Detection of Similar Biological Materials Using Femtosecond Filament-Induced Breakdown Spectroscopy,” Appl. Phys. B 87, 151–156 (2007).ADSCrossRefGoogle Scholar
  43. 43.
    G. W. Faris, R. A. Copeland, K. Mortelmans, and B. V. Bronk, “Spectrally Resolved Absolute Fluorescence Cross Sections for Bacillus Spores,” Appl. Opt. 36, 958–967 (1997).ADSCrossRefGoogle Scholar
  44. 44.
    J. Kunnil, S. Sarasanandarajah, E. Chacko, and L. Reinisch, “Fluorescence Quantum Efficiency of Dry Bacillus Globigii Spores,” Opt. Express 13, 8969–8979 (2005).ADSCrossRefGoogle Scholar
  45. 45.
    J. Atkins, M. E. Thomas, and R. I. Joseph, “Spectrally Resolved Fluorescence Cross Sections of BG and BT with a 266-nm Pump Wavelength,” Proc. SPIE 6554, 65540T (2007).ADSCrossRefGoogle Scholar
  46. 46.
    S. Cabredo, A. Parra, and J. Anzano, “Bacteria Spectra Obtained by Laser Induced Fluorescence,” J. Fluoresc. 17, 171–180 (2007).CrossRefGoogle Scholar
  47. 47.
    W. F. Hug, R. Bhartia, A. Taspin, A. Lane, P. Conrad, K. Sijapati, and R. D. Reid, “Status of Miniature Integrated UV Resonance Fluorescence and Raman Sensors for Detection and Identification of Biochemical Warfare Agents,” Proc. SPIE 5994, 59940J (2005).ADSCrossRefGoogle Scholar
  48. 48.
    Analytical Chemistry, in 2 Vols., Ed. by R. Kellner, J.-M. Mermet, M. Otto, and H. M. Widner (Wiley-VCH, New York, 1998; Mir, AST, Moscow, 2004).Google Scholar
  49. 49.
    B. M. Mar’yanov, Selected Chapters of Chemometrics (Tomsk. Univ., Tomsk, 2004) [in Russian].Google Scholar
  50. 50.
    S. K. Sharma, J. N. Porter, A. K. Misra, H. W. Hubble, and P. Menon, “Portable Stand-Off Raman and Mie-Rayleigh Lidar for Cloud, Aerosol, and Chemical Monitoring,” Proc. SPIE 5154, 1–14 (2003).ADSCrossRefGoogle Scholar
  51. 51.
    M. Wu, M. Ray, K. H. Fung, M. W. Ruckman, D. Harder, and A. J. Sedlacek III, “Stand-Off Detection of Chemicals by UV Raman Spectroscopy,” Appl. Spectrosc. 54, 800–806 (2000).ADSCrossRefGoogle Scholar
  52. 52.
    Yu. S. Balin, G. P. Kokhanenko, A. N. Kuryak, M. M. Makogon, M. M. Novoselov, Yu. N. Ponomarev, O. A. Rynkov, and G. V. Simonova, “Mobile Aerosol Fluorescence Lidar,” in Proceedings of the 16th Intern. Symposium on Optics of Atmosphere and Ocean. Physics of Atmosphere, Tomsk, 12–15 Oct. 2009 (IOA SO RAN, Tomsk, 2009), pp. 496–499.Google Scholar
  53. 53.
    S. D. Christesen, C. N. Merrow, M. S. DeSha, A. Wong, M. W. Wilson, and J. Butler, “UV Fluorescence Lidar Detection of Bioaerosols,” Proc. SPIE 2222, 228–237 (1994).ADSCrossRefGoogle Scholar
  54. 54.
  55. 55.
    S. Buteau, L. Stadnyk, S. Rowsell, J.-R. Simard, J. Ho, B. Dery, and J. McFee, “Spectrally Resolved Laser-Induced Fluorescence for Bioaerosols Standoff Detection,” Proc. SPIE 6756, 675608 (2007).CrossRefGoogle Scholar
  56. 56.
    A. Kumar and P. C. Sharma, “Uses of LIBS Technology in Biological Media,” Proc. SPIE 6377, 637701 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • M. M. Makogon
    • 1
  1. 1.Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations