Skip to main content
Log in

Comparative analysis of spectroscopic methods for remote diagnostics of bioaerosols

  • Spectroscopy of Ambient Medium
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

A concise description of physical processes, which can be used for remote diagnostics of bioaerosols, are described concisely. Based on the spectroscopic information on a series of bioaerosols, the sensitivity of measurements is estimated, and some indicative results are given. The conclusion about prospects and opportunities of remote determination of qualitative structure and quantitative contents of bioaerosols in the atmosphere is made. The consideration is limited by optical and near-IR spectral ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. H. Woodruff, T. G. Spiro, and C. Gilvarg, “Raman Spectroscopy in vivo: Evidence on the Structure of Dipicolinate in Intact Spores of Bacillus Megaterium,” Biochem. Biophys. Res. Commun. 58, 197–203 (1974).

    Article  Google Scholar 

  2. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman Spectra of Pyridine Adsorbed at a Silver Electrode,” Chem. Phys. Lett. 26, 163–166 (1974).

    Article  ADS  Google Scholar 

  3. S. Chadha, R. Manoharan, P. Moenne-Loccoz, W. H. Nelson, W. L. Peticolas, and J. F. Sperry, “Comparison of the UV Resonance Raman Spectra of Bacteria, Bacterial Cell Walls, and Ribosomes Excited in the Deep UV,” Appl. Spectrosc. 47, 38–43 (1993).

    Article  ADS  Google Scholar 

  4. R. Manoharan, E. Ghiamati, S. Chadha, W. H. Nelson, and J. F. Sperry, “Effect of Cultural Conditions of Deep UV Resonance Raman Spectra of Bacteria,” Appl. Spectrosc. 47, 2145–2150 (1993).

    Article  ADS  Google Scholar 

  5. W. H. Nelson, R. Manoharan, and J. F. Sperry, “UV Resonance Raman Studies of Bacteria,” Appl. Spectrosc. Rev. 27, 67–124 (1992).

    Article  ADS  Google Scholar 

  6. E. Ghiamati, R. Manoharan, W. H. Nelson, and J. F. Sperry, “UV Resonance Raman Spectra of Bacillus Spores,” Appl. Spectrosc. 46, 357–364 (1992).

    Article  ADS  Google Scholar 

  7. E. C. Lopez-Diez and R. Goodacre, “Characterization of Microorganisms Using UV Reseonance Raman Spectroscopy and Chemometrics,” Anal. Chem. 76, 585–591 (2004).

    Article  Google Scholar 

  8. R. M. Jarvis and R. Goodacre, “Ultra-Violet Resonance Raman Spectroscopy for Rapid Discrimination of Urinary Tract Infection Bacteria,” FEMS Microbiol. Lett. 232, 127–132 (2004).

    Article  Google Scholar 

  9. S. Chadha, W. H. Nelson, and J. F. Sperry, “Ultra-Violet Micro-Raman Spectrograph for the Detection of Small Numbers of Bacterial Cells,” Rev. Sci. Instrum. 64, 3088–3093 (1993).

    Article  ADS  Google Scholar 

  10. K. A. Britton, R. A. Dalterio, W. H. Nelson, D. Britt, and J. F. Sperry, “Ultraviolet Resonance Raman Spectra of Escherichia Coli with 222.5–251.0 nm Pulsed Laser Excitation,” Appl. Spectrosc. 42, 782–788 (1988).

    Article  ADS  Google Scholar 

  11. Q. Wu, T. Hamilton, W. H. Nelson, S. Elliott, J. F. Sperry, and M. Wu, “UV Raman Spectral Intensities of E. Coli and Other Bacteria Excited at 228.9, 244.0, and 248.2 nm,” Anal. Chem. 73, 3432–3440 (2001).

    Article  Google Scholar 

  12. R. Manoharan, E. Ghiamati, S. Chadha, W. H. Nelson, and J. F. Sperry, “Effect of Cultural Conditions of Deep UV Resonance Raman Spectra of Bacteria,” Appl. Spectrosc. 47, 2145–2150 (1993).

    Article  ADS  Google Scholar 

  13. A. Harriman, “Photophysical Processes in Condensed Phases,” in Photochemistry, Vol. 33, Ed. by A. Gilbert (the Royal Society of Chemistry, London, 2002), pp. 13–50.

    Google Scholar 

  14. K. Ya. Kondrat’ev and D. V. Pozdnyakov, Optical Properties of Natural Waters and Remote Probing of Phytoplankton (Nauka, Leningrad, 1988) [in Russian].

    Google Scholar 

  15. J. Gelbwach and M. Birnbaum, “Fluorescence of Atmospheric Aerosols and Lidar Implication,” Appl. Opt. 12, 2442–2447 (1973).

    Article  ADS  Google Scholar 

  16. R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984; Mir, Moscow, 1987).

    Google Scholar 

  17. M. L. Laucks, G. Roll, G. Schweiger, and E. J. Davis, “Physical and Chemical (Raman) Characterization of Bioaerosols-Pollen,” J. Aerosol Sci. 31, 307–319 (2000).

    Article  Google Scholar 

  18. C. E. Alupoaei and L. H. Garcia-Rubio, “Growth Behavior of Microorganisms Using UV-Vis Spectroscopy: Escherichia Coli,” Biotechnol. Bioeng. 86, 163–167 (2004).

    Article  Google Scholar 

  19. C. E. Alupoaei, J. A. Olivares, and L. H. Garcia-Rubio, “Quantitative Spectroscopy Analysis of Prokaryotic Cells: Vegetative Cells and Spores,” Biosensor. Bioelect. 19, 893–903 (2004).

    Article  Google Scholar 

  20. S. C. Hill, R. G. Pinnick, P. Nachman, G. Chen, R. K. Chang, M. W. Mayo, and G. L. Fernandez, “Aerosol-Fluorescence Spectrum Analyzer: Real-Time Measurement of Emission Spectra of Airborne Biological Particles,” Appl. Opt. 34, 7149–7155 (1995).

    Article  ADS  Google Scholar 

  21. Y. L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, and J. R. Bottiger, “Single-Shot Fluorescence Spectra of Individual Micrometer-Sized Bio-Aerosols Illuminated by a 351- or a 266-nm Ultraviolet Laser,” Opt. Lett. 24, 116–118 (1999).

    Article  ADS  Google Scholar 

  22. S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, and G. Feather, “Real-Time Measurement of Fluorescence Spectra from Single Airborne Biological Particles,” Field Anal. Chem. Tech. 3, 221–239 (1999).

    Article  Google Scholar 

  23. J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. P. Choulas, and M. Seaver, “Continuous, Rapid Biological Aerosol Detection with the Use of UV Fluorescence: Outdoor Test Results,” Field Anal. Chem. Tech. 3, 249–259 (1999).

    Article  Google Scholar 

  24. J. D. Eversole, W. K. Cary, C. S. Scotto, R. Pierson, M. Spence, and A. J. Campillo, “Continuous Bioaerosol Monitoring Using UV Excitation Fluorescence: Outdoor Test Results,” Field Anal. Chem. Tech. 5, 205–212 (2001).

    Article  Google Scholar 

  25. Y. L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, “Single-Particle Fluorescence Spectrometer for Ambient Aerosols,” Aerosol Sci. Tech. 37, 628–639 (2003).

    Article  Google Scholar 

  26. P. Nachman, G. Chen, R. G. Pinnick, S. C. Hill, R. K. Chang, M. W. Mayo, and G. L. Fernandez, “Conditional-Sampling Spectrograph Detection System for Fluorescence Measurements of Individual Airborne Biological Particles,” Appl. Opt. 35, 1069–1076 (1996).

    Article  ADS  Google Scholar 

  27. G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, and R. K. Chang, “Conditional-Firing Aerosol-Fluorescence Spectrum Analyzer for Individual Airborne Particles with Pulsed 266-nm Laser Excitation,” Opt. Lett. 21, 1307–1309 (1996).

    Article  ADS  Google Scholar 

  28. P. H. Kaye, J. E. Barton, E. Hirst, and J. M. Clark, “Simultaneous Light Scattering and Intrinsic Fluorescence Measurement for the Classification of Airborne Particles,” Appl. Opt. 39, 3738–3745 (2000).

    Article  ADS  Google Scholar 

  29. V. Sivaprakasam, A. L. Huston, C. Scotto, and J. D. Eversole, “Multiple UV Wavelength Excitation and Fluorescence of Bio-Aerosols,” Opt. Express 12, 4457–4466 (2004).

    Article  ADS  Google Scholar 

  30. Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, D. J. Rader, T. J. O’Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of Bioaerosols Using Multiwavelength UV Fluorescence Spectroscopy,” Aerosol Sci. Tech. 30, 186–201 (1999).

    Article  Google Scholar 

  31. S. C. Hill, R. G. Pinnick, and P. Nachman, “Conditional-Sampling Spectrograph Detection System for Fluorescence Measurements of Individual Airborne Biological Particles,” Appl. Opt. 35, 1069–1076 (1996).

    Article  ADS  Google Scholar 

  32. K. L. Schroder, P. J. Hargis, Jr., R. L. Schmitt, D. J. Rader, and I. R. Shokair, “Development of an Unattended Ground Sensor for Ultraviolet Laser Induced Fluorescence Detection of Biological Agent Aerosols,” Proc. SPIE 3855, 82–91 (1999).

    Article  ADS  Google Scholar 

  33. L. Leblanc and E. Dufour, “Monitoring the Identity of Bacteria Using Their Intrinsic Fluorescence,” FEMS Microbiol. Lett. 211, 147–153 (2002).

    Article  Google Scholar 

  34. R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, and R. K. Chang, “Aerosol Fluorescence Spectrum Analyzer for Rapid Measurement of Single Micrometersized Airborne Biological Particles,” Aerosol Sci. Tech. 28, 95–104 (1998).

    Article  Google Scholar 

  35. P. Jonsson, F. Kullander, P. Wüsterby, M. Tiihonen, and M. Lindgren, “Detection of Fluorescence Spectra of Individual Bioaerosol Particles,” Proc. SPIE 5990, 59900M (2005).

    Article  ADS  Google Scholar 

  36. L. T. Sukhov, Laser Spectral Analysis (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  37. Yu. E. Geints, A. A. Zemlyanov, V. E. Zuev, A. M. Kabanov, and V. A. Pogodaev, Nonlinear Optics of Atmospheric Aerosols (SO RAN, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  38. Optical Discharge in Aerosols, Ed. by Yu. D. Kopytin, Yu. M. Sorokin, A. M. Skripkin, N. N. Belov, and V. I. Bukatyi (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  39. R. S. Harmon, F. C. De Lucia, C. A. Munson, A. W. Miziolek, and K. L. McNesby, “Laser-Induced Breakdown Spectroscopy (LIBS)-an Emerging Field-Portable Sensor Technology for Real-Time Chemical Analysis for Military, Security and Environmental Applications,” Proc. SPIE 5994, 59940K (2005).

    Article  Google Scholar 

  40. V. E. Zuev, V. A. Banakh, and V. V. Pokasov, Optics of Turbulent Atmosphere (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  41. J. P. Wolf, “Detection and Identification of Bacteria in Air Using Femtosecond Spectroscopy,” in Analysis and Control of Ultrafast Photoinduced Reactions (Springer, Berlin, Heidelberg, 2007), pp. 807–828.

    Google Scholar 

  42. H. L. Xu, G. M’ejean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote Detection of Similar Biological Materials Using Femtosecond Filament-Induced Breakdown Spectroscopy,” Appl. Phys. B 87, 151–156 (2007).

    Article  ADS  Google Scholar 

  43. G. W. Faris, R. A. Copeland, K. Mortelmans, and B. V. Bronk, “Spectrally Resolved Absolute Fluorescence Cross Sections for Bacillus Spores,” Appl. Opt. 36, 958–967 (1997).

    Article  ADS  Google Scholar 

  44. J. Kunnil, S. Sarasanandarajah, E. Chacko, and L. Reinisch, “Fluorescence Quantum Efficiency of Dry Bacillus Globigii Spores,” Opt. Express 13, 8969–8979 (2005).

    Article  ADS  Google Scholar 

  45. J. Atkins, M. E. Thomas, and R. I. Joseph, “Spectrally Resolved Fluorescence Cross Sections of BG and BT with a 266-nm Pump Wavelength,” Proc. SPIE 6554, 65540T (2007).

    Article  ADS  Google Scholar 

  46. S. Cabredo, A. Parra, and J. Anzano, “Bacteria Spectra Obtained by Laser Induced Fluorescence,” J. Fluoresc. 17, 171–180 (2007).

    Article  Google Scholar 

  47. W. F. Hug, R. Bhartia, A. Taspin, A. Lane, P. Conrad, K. Sijapati, and R. D. Reid, “Status of Miniature Integrated UV Resonance Fluorescence and Raman Sensors for Detection and Identification of Biochemical Warfare Agents,” Proc. SPIE 5994, 59940J (2005).

    Article  ADS  Google Scholar 

  48. Analytical Chemistry, in 2 Vols., Ed. by R. Kellner, J.-M. Mermet, M. Otto, and H. M. Widner (Wiley-VCH, New York, 1998; Mir, AST, Moscow, 2004).

    Google Scholar 

  49. B. M. Mar’yanov, Selected Chapters of Chemometrics (Tomsk. Univ., Tomsk, 2004) [in Russian].

    Google Scholar 

  50. S. K. Sharma, J. N. Porter, A. K. Misra, H. W. Hubble, and P. Menon, “Portable Stand-Off Raman and Mie-Rayleigh Lidar for Cloud, Aerosol, and Chemical Monitoring,” Proc. SPIE 5154, 1–14 (2003).

    Article  ADS  Google Scholar 

  51. M. Wu, M. Ray, K. H. Fung, M. W. Ruckman, D. Harder, and A. J. Sedlacek III, “Stand-Off Detection of Chemicals by UV Raman Spectroscopy,” Appl. Spectrosc. 54, 800–806 (2000).

    Article  ADS  Google Scholar 

  52. Yu. S. Balin, G. P. Kokhanenko, A. N. Kuryak, M. M. Makogon, M. M. Novoselov, Yu. N. Ponomarev, O. A. Rynkov, and G. V. Simonova, “Mobile Aerosol Fluorescence Lidar,” in Proceedings of the 16th Intern. Symposium on Optics of Atmosphere and Ocean. Physics of Atmosphere, Tomsk, 12–15 Oct. 2009 (IOA SO RAN, Tomsk, 2009), pp. 496–499.

    Google Scholar 

  53. S. D. Christesen, C. N. Merrow, M. S. DeSha, A. Wong, M. W. Wilson, and J. Butler, “UV Fluorescence Lidar Detection of Bioaerosols,” Proc. SPIE 2222, 228–237 (1994).

    Article  ADS  Google Scholar 

  54. http://www.fibertek.com/Projects-05-Bio.html

  55. S. Buteau, L. Stadnyk, S. Rowsell, J.-R. Simard, J. Ho, B. Dery, and J. McFee, “Spectrally Resolved Laser-Induced Fluorescence for Bioaerosols Standoff Detection,” Proc. SPIE 6756, 675608 (2007).

    Article  Google Scholar 

  56. A. Kumar and P. C. Sharma, “Uses of LIBS Technology in Biological Media,” Proc. SPIE 6377, 637701 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.M. Makogon, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makogon, M.M. Comparative analysis of spectroscopic methods for remote diagnostics of bioaerosols. Atmos Ocean Opt 24, 123–132 (2011). https://doi.org/10.1134/S1024856011020114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856011020114

Keywords

Navigation