Advertisement

Atmospheric and Oceanic Optics

, Volume 23, Issue 6, pp 469–477 | Cite as

Femtosecond laser pulse scattering on spherical polydispersions: Monte-carlo simulation

  • Yu. E. Geints
  • A. A. Zemlyanov
  • G. M. Krekov
  • G. G. Matvienko
Optics of Stochastically-Heterogeneous Media

Abstract

This paper presents the results of the numerical solution (the Monte Carlo method) of the nonstationary radiation transfer equation in an optically dense disperse medium. As a model of the medium, the presence of a polydisperse liquid-droplet cloud is assumed. An ultrashort intense laser pulse stimulates nonstationary transition processes in the scattering particle volume even under linear interaction conditions during its propagation, resulting in time transformation of the characteristics of optical medium and, primarily, the scattering phase function. To calculate the time dynamics of the scattering phase function of a laser pulse by a transparent spherical particle, the nonstationary Mie theory was used, based on the Fourier representation of the original light pulse and the linear theory of radiation diffraction on a sphere. The calculated optical characteristics were used as the input parameters to numerically solve the problem of multiple scattering of a femtosecond pulse in a liquid-droplet cloud by the Monte Carlo method. Preliminary calculation results indicate the possibility of considerable enhancement of the backscattering signal owing to dynamic changes in the scattering phase function, resulting in reduction of anisotropy.

Keywords

Phase Function Oceanic Optic Femtosecond Laser Pulse Femtosecond Pulse Droplet Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zimnyakov, A., Tuchin, V.V., Optical Tomography of Tissues, Quant. Electron., 2002, vol. 32, no. 5, pp. 849–856.CrossRefADSGoogle Scholar
  2. 2.
    Chany, P., Devarajy, B., Yamaday, M., Inaba, H., Coherent Detection Techniques in Optical Imaging of Tissues, Phys. Med. Biol., 1997, vol. 42, no. 4, pp. 855–867.CrossRefGoogle Scholar
  3. 3.
    Ultrashort Laser Pulses in Biology and Medicine, Berlin; Heidelberg: Springer, 2008.Google Scholar
  4. 4.
    Kasparian, J., Wolf, J., Physics and Applications of Atmospheric Nonlinear Optics and Filamentation, Opt. Express., 2008, vol. 16, no. 2, pp. 466–493.CrossRefADSGoogle Scholar
  5. 5.
    Zemlyanov, A.A., Geints, Yu.E., Nonstationary Elastic Linear Light Scattering by Spherical microparticles, Atm. Oceanic Opt., 2002, vol. 15, no. 8, pp. 684–692.Google Scholar
  6. 6.
    Shifrin, K.S., Zolotov, I.G., Nonstationary Scattering of Electromagnetic Pulses by Spherical Particles, Appl. Opt., 1995, vol. 34, no. 3, pp. 552–558.CrossRefADSGoogle Scholar
  7. 7.
    Geints, Yu.E., Zemlyanov, A.A., Krekov, G.M., Krekova, M.M., Matvienko, G.G., Propagation of Femtosecond Laser Radiation through Cloud Aerosol: Monte Carlo Simulation, Atm. Oceanic Opt., 2006, vol. 19, no. 10, pp. 827–834.Google Scholar
  8. 8.
    Geints, Yu.E., Zemlyanov, A.A., Krekov, G.M., Krekova, M.M., Matvienko, G.G., Femtosecond Laser Pulse Propagation through Aerosol Clouds: Monte Carlo Simulation, Abstr. of XII Joint Int. Symposium on Atmospheric and Oceanic Optics, Tomsk, 2005, p. 78.Google Scholar
  9. 9.
    Krekov, G.M., Matvienko, G.G., Geints, Yu.E., Zemlyanov, A.A., Krekova, M.M., Enhance Femtosecond Lidar Backscattering by Liquid Particle Cloud, Reviewed and Revised Papers of 23 Int. Laser Radar Conference, Nara, Japan, 2006, pp. 127–130.Google Scholar
  10. 10.
    Quan, H., Guo, Z., Simulation of Whispering-gallerymode Resonance Shifts for Optical Miniature Biosensors, J. Quant. Spectrosc. and Radiat. Transfer., 2005, vol. 93, no. 1, pp. 231–242.CrossRefADSGoogle Scholar
  11. 11.
    Chylek, ’ P., Kiehl, J.T., Ko, M.K.W., Narrow Resonance Structure in the Mie Scattering Characteristics, Appl. Opt., 1978, vol. 17, no. 19, pp. 3019–3021.CrossRefADSGoogle Scholar
  12. 12.
    Chowdhury, D.Q., Hill, S.C., Barber, P.W., Time Dependence of Internal Intensity of a Dielectric Sphere on and near Resonance, J. Opt. Soc. Amer. B, 1992, vol. 9, no. 8, pp. 1364–1373.CrossRefADSGoogle Scholar
  13. 13.
    Zemlyanov, A.A., Geints, Yu.E., Intensity of Optical Field Inside a Weakly Absorbing Spherical Particle Irradiated by a Femtosecond Laser Pulse, Optics and Spectroscopy, 2004, vol. 96, no. 2, pp. 298–3404.CrossRefADSGoogle Scholar
  14. 14.
    Mishchenko, M.I., Travis, L.D., Lacis, A.A., Scattering, Absorption, and Emission of Light by Small Particles, Cambridge: Cambridge Univ. Press, 2002.Google Scholar
  15. 15.
    Deirmendjian, D., Electromagnetic Scattering on Spherical Polydispersions, N.Y.: Elsevier, 1969.Google Scholar
  16. 16.
    Krekov, G.M., Krekova, M.M., Khmelevtsov, S.S., Numerical Solution of Radiation Transfer Equation in the Medium with Nonstationary Optical Properties, in Rasprostranenie opticheskikh voln v atmosfere (Optical Wave Propagation in the Atmosphere), Novosibirsk: Nauka, 1975, pp. 34–47.Google Scholar
  17. 17.
    Monte Carlo Method in the Atmospheric optics, Marchuk, G.I., Ed., Novosibirsk: Nauka, 1976.Google Scholar
  18. 18.
    Mikhailov, G.A., Optimizatsiya vesovykh metodov Monte-Karlo (Optimization of Monte Carlo Weight Methods), Moscow: Nauka, 1987.Google Scholar
  19. 19.
    Baurayon, R., Mejean, G., Kosparian, J., White-light Filaments for Multiparameter Analysis of Cloud Microphysics, J. Opt Soc. Amer. B, 2005, vol. 22, no. 2, pp. 369–377.CrossRefADSGoogle Scholar
  20. 20.
    Boutou, V., Favre, C., Hill, S.C., Pan, Y.L., Wolf, J.P., Backward Enhanced Emission from Multiphoton Processes in Aerosols, Appl. Phys. B, 2002, vol. 75, no. 1, pp. 145–152.CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • Yu. E. Geints
    • 1
  • A. A. Zemlyanov
    • 1
  • G. M. Krekov
    • 1
  • G. G. Matvienko
    • 1
  1. 1.V. E. Zuev Institute of Atmospheric Optics SB RASTomskRussia

Personalised recommendations