Skip to main content
Log in

Femtosecond pulse splitting effect in the linear transfer regime

  • Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The parametric boundaries and physical mechanism of the origination of the femtosecond laser pulse splitting effect in a strongly scattering medium are ascertained on the basis of a Monte Carlo numerical solution of a nonstationary transfer equation. It is shown that the splitting effect resulting in a bimodal configuration of a pulse envelope is pronounced in a limited range of values of the scattering coefficient of the disperse medium and the anisotropy factor of the phase scattering function. The effect has been registered at pulses of less than 800 fs in length; the geometrical conditions of the signal recording are of essential importance. Under the optimal choice of parameters, the time configuration of the computed signals is in good qualitative agreement with the well-known experimental data. The accounting for the fine time structure of a transmitted signal and the multiparameter dependence of the expected effect require a certain modification of the local statistical modeling algorithms given in the Appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Optical Tomography and Spectroscopy of Tissue VI,” Proc. SPIE. Int. Soc. Opt. Eng. 5693 (2005).

  2. LIDAR: Range-Resolved Optical Remote Sensing of the Atmosphere, Ed. by Claus Weitkamp (Springer Sci., Business Media, Singapore, 2005).

    Google Scholar 

  3. N. Moreno, S. Bougourd, and J. Haseloff, Imaging Plant Cells, Handbook of Biological Confocal Microscopy, Ed. by J. B. Pawley (Springer Sci., New York, 2006).

    Google Scholar 

  4. A. M. Zheltikov, Supershort Pulses and Methods of Nonlinear Optics (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  5. K. M. Yoo and R. R. Alfano, “Time-Resolved Coherent and Incoherent Components of Forward Light Scattering in Random Media,” Opt. Lett. 15(6), 320–323 (1990).

    Article  ADS  Google Scholar 

  6. F. Liu, K. M. Yoo, and R. R. Alfano, “Ultrafast Laser-Pulse Transmission and Imaging through biological Tissue,” Appl. Opt. 32(4), 554–558 (1993).

    Article  ADS  Google Scholar 

  7. L. Wang, P. P. Ho, G. Zhang, and R. R. Alfano, “Ballistic 2-D Imaging through Scattering Walls using an Ultrafast Optical Kerr Gate,” Science 253(8), 769–771 (1991).

    Article  ADS  Google Scholar 

  8. A. Andreoni, M. Bondani, A. Brega, F. Paleari, and A. S. Spinelli, “Detection of Nondelayed photons in the Forward-Scattering of Picosecond Pulses,” Appl. Phys. Lett. 84, 2457–2460 (2004).

    Article  ADS  Google Scholar 

  9. C. Calba, L. Mees, C. Rose, and T. Girasole, “Ultrashort Pulse Propagation through A Strongly Scattering Medium: Simulation and Experiments,” J. Opt. Soc. Am. A 25, 1541–1550 (2008).

    Article  ADS  Google Scholar 

  10. V. M. Podgaetsky, S. A. Tereshchenko, A. V. Smirnov, and N. S. Vorob’hev, “Bimodal Temporal Distribution of Photons in Ultrashort Laser Pulse Passed through a Turbid Medium,” Opt. Commun, 180, 217–223 (2000).

    Article  ADS  Google Scholar 

  11. S. A. Tereshchenko, V. M. Podgaetskii, N. S. Vorob’ev, and A. V. Smirnov, “Conditions During Passage of Short Optical Pulses Across A Strongly Scattering Media,” Kvantov. Elektron. 23(3), 265–268 (1996) [Quantum. Electron. 26, 258 (1996)]

    Google Scholar 

  12. S. A. Tereshchenko, A. V. Smirnov, V. M. Podgaetskii, and N. S. Vorob’ev, “Axial and Diffusion Models of the Laser Pulse Propagationin a Highly-Scattering Medium,” Kvantov. Elektron. 34, 541–544 (2004) [Quantum. Electron. 34, 541 (2004)].

    Article  Google Scholar 

  13. A. Ishimaru, Wave Propagation and Scattering in Random Media, vol. 1 (Wiley, New York, 1994; Mir, Moscow, 1981).

    Google Scholar 

  14. A. Ishimary, “Diffusion of a Pulse in Densely Distributed Scatterers,” J. Opt. Soc. Am. 68, 1045–1050 (1978).

    Article  ADS  Google Scholar 

  15. M. S. Patterson, B. Chance, and B. C. Wilson, “Time Resolved Reflectance and Transmittance for the Invasive Measurements of Tissue Optical Properties,” Appl. Opt. 28, 2331–2336 (1989).

    Article  ADS  Google Scholar 

  16. G. M. Krekov, M. M. Krekova, and I. V. Samokhvalov, “Deformation of Short Light Pulses in Model Dispersive Media,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 5, 150–153 (1969).

  17. E. A. Bucher, “Computer Simulation of Light Pulse Propagation for Communication through Thick Clouds,” Appl. Opt. 12(10), 2391–2400 (1973).

    Article  ADS  Google Scholar 

  18. G. Zaccanti, “Monte Carlo Study of Light Propagation in Optically Thick Media: Point Source Case,” Appl. Opt. 30, 2031–2037 (1991).

    Article  ADS  Google Scholar 

  19. S. L. Jacques, “Time Resolved Propagation of Ultrashort Laser Pulses Within Turbid Tissues,” Appl. Opt. 28, 2223–2229 (1989).

    Article  ADS  Google Scholar 

  20. E. A. Sergeeva, M. Yu. Kirillin, and A. V. Priezzhev, “Propagation of a Femtosecond Pulse in a Scattering Medium: Theoretical Analysis and Numerical Simulation,” Kvant. Elektron. 36(11), 1023–1031 (2006) [Quantum. Electron. 36, 1023 (2006)].

    Article  ADS  Google Scholar 

  21. G. A. Mikhailov, Optimization of Weighted Monte Carlo Method (Nauka, Moscow, 1987; Springer, Berlin, Heidelberg, New York, 1991).

    Google Scholar 

  22. G. M. Krekov, V. M. Orlov, and V. V. Belov, Imitation Simulation in Problems of Optical Remote Sensing (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  23. http://www.medphys.ucl.ac.uk/research/borg/homepages/davek/phd/chapter7

  24. N. S. Vorob’ev, V. M. Podgaetskii, A. V. Smirnov, and S. A. Tereshchenko, “Observation of the Temporal Separation of Photons in an Ultrashort Laser Pulse Transmitted through a Scattering Medium,” Kvant. Elektron. 29, 181–182 (1999) [Quantum. Electron. 29, 737 (1999)].

    Google Scholar 

  25. I. S. Kutis, V. V. Sapozhnikova, R. V. Kuranov, and V. A. Kamenskii, “Study of the Morphological and Functional State of Higher Plant Tissues by Optical Coherence Microscopy and Optical Coherence Tomography,” Russ. J. Plant Physiol. 52(4), 559–564 (2005).

    Article  Google Scholar 

  26. A. Reeves, R. L. Parson, and J. W. Hettinger, “In Vivo Three-Dimensional Imaging of Plants with Optical Coherence Microscopy,” J. Microsc. 208(3), 177–189 (2002).

    Article  MathSciNet  Google Scholar 

  27. J. Johanson, R. Berg, A. Pifferi, A. Svanberg, and L. O. Bjorn, “Time-Resolved Studies of Light Propagation in Crassula and Phaseolus Leaves,” Photochem. Photobiol. 69(2), 242–247 (1999).

    Article  Google Scholar 

  28. G. M. Krekov, M. M. Krekova, and A. A. Lisenko, “Radiative Characteristics of Plant Leaf,” Opt. Atmosf. Okeana 22, 397–410 (2009) [Atmos. Ocean Opt. 22, 397–410 (2009)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.M. Krekov, A.Yu. Kopytin, 2010, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krekov, G.M., Kopytin, A.Y. Femtosecond pulse splitting effect in the linear transfer regime. Atmos Ocean Opt 23, 188–196 (2010). https://doi.org/10.1134/S1024856010030061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856010030061

Keywords

Navigation