Skip to main content
Log in

Optimization of the BSCFM5-Based Cathode Layer in the Microtubular Solid-Oxide Fuel Cells and the Study of Its Effect on the Power Characteristics

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Among all types of solid oxide fuel cells, the microtubular design demonstrated increased resistance to thermal cycling and a high power density (from 300 to 1000 W/kg and higher). Currently, one of the basic problems is the choice of a material to be used as the cathode; other problems are associated with the microstructure just within the cathodic layer of the microtubular solid-oxide fuel cells. This work is aimed at the studying of the power characteristics of microtubular solid-oxide fuel cells using Ba0.5Sr0.5Co0.75Fe0.2Mo0.05O3 – δ as a cathode material. A cathodic layer with a thickness of 65 µm, including 4 cathodic functional layers and 4 cathodic collecting ones, is optimal and allows reaching the power of a single microtubular solid-oxide fuel cell as high as 750–850 mW/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Popov, M.P., Starkov, I.A., Bychkov, S.F., and Nemudry, A.P., Improvement of Ba0.5Sr0.5Co0.8Fe0.2O3 – δ functional properties by partial substitution of cobalt with tungsten, J. Membr. Sci., 2014, vol. 469, p. 88.

    Article  CAS  Google Scholar 

  2. Teraoka, Y., Zhang, H.-M., and Yamazo, N., Oxygen—sorptive properties of defect perovskite-type La1 ‒ xSrxCo1 – yFeyO3 – δ, Chem. Lett, 1985, vol. 14, p. 1367.

    Article  Google Scholar 

  3. Botea-Petcu, A., Tanasescu, S., Varazashvili, V., Lejava, N., Machaladze, T., Khundadze, M., Maxim, F., Teodorescu, F., Martynczuk, J., Yáng, Z., and Gauckler, J.L, Thermodynamic data of Ba0.6Sr0.4Co0.8Fe0.2O3 − δ SOFC cathode material, Mater. Res. Bull., 2014, vol. 57, p. 184.

    Article  CAS  Google Scholar 

  4. Shao, Z.P., Yang, W.S., Cong, Y., Dong, H., Tong, J.H., and Xiong, G.X., Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3 − δ oxygen membrane, J. Membr. Sci., 2000, vol. 172, p. 177.

    Article  CAS  Google Scholar 

  5. Zhao, H.L., Shen, W., Zhu, Z.M., Li, X., and Wang, Z.F., Preparation and properties of BaxSr1 – xCoyFe1 – yO3 − δ cathode material for intermediate temperature solid oxide fuel cells, J. Power Sources, 2008, vol. 182, p. 503.

    Article  CAS  Google Scholar 

  6. Zhou, W., Ran, R., and Shao, Z., Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ- based cathodes for intermediate-temperature solid-oxide fuel cells: a review, J. Power Sources, 2009, vol. 192, p. 231.

    Article  CAS  Google Scholar 

  7. Chen, Z.H., Ran, R., Shao, Z.P., Yu, H., da Costa, C.D.J., and Liu, S.M., Further perfor mance improvement of Ba0.5Sr0.5Co0.8Fe0.2O3 − δ perovskite membranes for air separation, Ceram. Int., 2009, vol. 35, p. 2455.

    Article  CAS  Google Scholar 

  8. Shao, Z.P., Xiong, G.X., Tong, J.H., Dong, H., and Yang, W.S., Ba effect in doped Sr (Co0.8Fe0.2)O3 − δ on the phase structure and oxygen permeation properties of the dense ceramic membranes, Sep. Purif. Technol., 2001, vol. 25, p. 419.

    Article  CAS  Google Scholar 

  9. Vente, J.F., Haije, W.G., and Rak, Z.S., Perfor mance of functional perovskite membranes for oxygen production, J. Membr. Sci., 2006, vol. 276, p. 178.

    Article  CAS  Google Scholar 

  10. Shao, Z.P. and Haile, S.M., A high-perfor mance cathode for the next generation of solid-oxide fuel cells, Nature, 2004, vol. 431, p. 170.

    Article  CAS  PubMed  Google Scholar 

  11. Shao, Z.P., Haile, S.M., Ahn, J., Ronney, P.D., Zhan, Z.L., and Barnett, S.A., A thermally self-sustained micro solid-oxide fuel-cell stack with high power density, Nature, 2005, vol. 435, p. 795.

    Article  CAS  PubMed  Google Scholar 

  12. Zeng, P.Y., Chen, Z.H., Zhou, W., Gu, H.X., Shao, Z.P., and Liu, S.M., Re-evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3 − δ perovskite as oxygen semi-permeable membrane, J. Membr. Sci., 2007, vol. 291, p. 148.

    Article  CAS  Google Scholar 

  13. Zhou, W., Ran, R., Shao, Z.P., Jin, W.Q., and Xu, N.P., Evaluation of A-site cation-deficient (Ba0.5Sr0.5)1 – xCo0.8Fe0.2O3 − δ (x > 0) perovskite as a solid-oxide fuel cell cathode, J. Power Sources, 2008, vol. 182, p. 24.

    Article  CAS  Google Scholar 

  14. Yang, Z., Harvey, A.S., Infor tuna, A., and Gauckler, L.J., Phase relations in the Ba–Sr– Co–Fe–O system at 1273 K in air, J. Appl. Crystallogr., 2009, vol. 42, p. 153.

    CAS  Google Scholar 

  15. Van Veen, A.C., Rebeilleau, M., Farrusseng, D., and Mirodatos, C., Studies on the perfor mance stability of mixed conducting BSCFO membranes in medium temperature oxygen permeation, Chem. Commun., 2003, p. 32.

  16. Liang, F., Jiang, H., Luo, H., Caro, J., and Feldhoff, A., Phase stability and permeation behavior of a dead-end Ba0.5Sr0.5Co0.8Fe0.2O3 − δ tube membrane in high-purity oxygen production, Chem. Mater., 2011, vol. 23, p. 4765.

    Article  CAS  Google Scholar 

  17. Svarcova, S., Wiik, K., Tolchard, J., Bouwmeester, H.J.M., and Grande, T., Structural instability of cubic perovskite BaxSr1 – xCo1 – yFeyO3 − δ, Solid State Ionics, 2008, vol. 178, p. 1787.

    Article  CAS  Google Scholar 

  18. Yang, Z., Harvey, A.S., Infortuna, A., and Gauckler, L.J., Phase relations in the Ba–Sr– Co–Fe–O system at 1273 K in air, J. Appl. Crystallogr., 2009, vol. 42, p. 153.

    CAS  Google Scholar 

  19. Demont, A., Sayers, R., Tsiamtsouri, M.A., Romani, S., Chater, P.A., Niu, H., Marti- Gastaldo, C., Xu, Z., Deng, Z., Breard, Y., Thomas, M.F., Claridge, J.B., and Rosseinsky, M.J., Single Sublattice Endotaxial Phase Separation Driven by Charge Frustration in a Complex Oxide, J. Amer. Chem. Soc., 2013, vol. 135, p. 10114.

    Article  CAS  Google Scholar 

  20. Gasparyan, H., Claridge, J.B., and Rosseinsky, M.J., Oxygen permeation and stability of Mo-substituted BSCF membranes, J. Mater. Chem., 2015, vol. A 3, p. 18265.

  21. Artimonova, E.V., Savinskaya, O.A., and Nemudry, A.P., Effect of B-site tungsten doping on structure and oxygen permeation properties of SrCo0.8Fe0.2O3 − δ perovskite membranes, Eur. J. Ceram. Soc., 2015, vol. 35, p. 2343.

    Article  CAS  Google Scholar 

  22. Kozhemyachenko, A.S. and Nemudry, A.P., Investigation of the functional characteristics of perovskites SrCo 0.8 – xFe0.2NbxO3 – δ, Chem. Sustain. Dev., 2010, vol. 18, p. 649.

    Google Scholar 

  23. Nemudry, A. and Uvarov, N., Nano structuring in composites and grossly nonstoichiometric or heavily doped oxides, Solid State Ionics, 2006, vol. 177, p. 2491.

    Article  CAS  Google Scholar 

  24. Markov, A.A., Savinskaya, O.A., Patrakeev, M.V., Nemudry, A.P., Leonidov, I.A., Pavlyukhin, Yu. T., Ishchenko, A.V., and Kozhevnikov, V.L., Structural features, nonstoichiometry and high-temperature transport in SrFe1 – xMoxO3 – δ, J. Solid State Chem., 2009, vol. 182, p. 799.

    Article  CAS  Google Scholar 

  25. Savinskaya, O. and Nemudry, A.P., Oxygen transport properties of nanostructured SrFe1 – xMoxO2.5 + 3/2x (0 < x < 0.1) perovskites, J. Solid State Electrochem., 2011, vol. 15, p. 269.

    Article  CAS  Google Scholar 

  26. Savinskaya, O.A., Nemudry, A.P., Nadeev, A.N., and Tsybulya, S.V., Synthesis and study of the thermal stability of SrFe1 – xMxO3 − z (M = Mo, W) perovskites, Solid State Ionics, 2008, vol. 179, p.1076.

    Article  CAS  Google Scholar 

  27. Markov, A.A., Patrakeev, M.V., Savinskaya, O.A., Nemudry, A.P., Leonidov, I.A., Leonidova, O.N., and Kozhevnikov, V.L., Oxygen nonstoichiometry and high-temperature transport in SrFe1 – xWxO3 – δ, Solid State Ionics, 2008, vol. 179, 99.

    Article  CAS  Google Scholar 

  28. Shubnikova, E.V., Bragina, O.A., and Nemudry, A.P., Mixed conducting molybdenum doped BSCF materials, J. Ind. Eng. Chem., 2018, vol. 59, pp. 242.

    Article  CAS  Google Scholar 

  29. Steel, B.C.H. and Heinzel, A., Materials for fuel-cell technologies, Nature, 2001, vol. 414, p. 345.

    Article  Google Scholar 

  30. Zhao, K., Kim, B.-H., Norton, M.G., and Ha, S.Y., Cathode Optimization for an Inert-Substrate-Supported Tubular Solid Oxide Fuel, Front. Energy Res. 2018, vol. 6:87, p. 1.

    Article  CAS  Google Scholar 

  31. Sun, C., Hui, R. and Roller, J., Cathode materials for solid oxide fuel cells: a review, J. Solid State Electrochem., 2010, vol. 14, p. 1125.

    Article  CAS  Google Scholar 

  32. Pavzderin, N.B. and Nikonov, A.V., RF Patent 2766871 C1, 2022.

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 21-79-30051.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Y. Lapushkina or V. P. Sivtsev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Based on the materials reported at the Second School for Young Scientists “Electrochemical Devices: Processes, Materials, Technologies” (Novosibirsk, October 28–30, 2022).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapushkina, E.Y., Sivtsev, V.P., Kovalev, I.V. et al. Optimization of the BSCFM5-Based Cathode Layer in the Microtubular Solid-Oxide Fuel Cells and the Study of Its Effect on the Power Characteristics. Russ J Electrochem 60, 50–56 (2024). https://doi.org/10.1134/S1023193524010063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193524010063

Keywords:

Navigation