Skip to main content
Log in

Electrochemical Synthesis of Tungsten Oxide in Chloride Solutions for Environmental Photocatalysis

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstrac

t—The electrochemical behavior of tungsten in chloride electrolytes with various cationic compositions (Na+, K+, Li+, \({\text{NH}}_{4}^{ + }\)) under the action of pulse alternating current is studied. The decisive influence of the nature of the electrolyte on the phase composition of the resulting dispersed products is shown. The use of NH4Cl provides the formation of pure crystalline WO3 with a particle sized 30–35 nm. The photoelectrochemical activity of the synthesized WO3 in a sulfuric acid medium under simulated solar radiation is studied. The addition of glycerol to H2SO4 causes a cathodic shift in the oxidation onset potential by 0.25 V and a three-fold increase in the maximal photocurrent density. The WO3/FTO-photoanode as part of a flow-through photocatalytic fuel cell (with glycerol as fuel and air-breathing Pt/C-cathode) showed excellent stability in acidic environment and the maximal power density of 64.0 μW cm–2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Pothu, R., Mameda, N., Boddula, R., Mitta, H., Perugopu, V., and Al-Qahtani, N., Sustainable conversion of biodiesel-waste glycerol to acrolein over Pd-modified mesoporous catalysts, Mater. Sci. Energy Technol., 2023, vol. 6, p. 226. https://doi.org/10.1016/j.mset.2022.12.012

    Article  CAS  Google Scholar 

  2. Kozlova, E.A., Kurenkova, A.Y., Gerasimov, E.Y., Gromov, N.V., Medvedeva, T.B., Saraev, A.A., and Kaichev, V.V., Comparative study of photoreforming of glycerol on Pt/TiO2 and CuOx/TiO2 photocatalysts under UV light, Mater. Lett., 2021, vol. 283, p. 128901. https://doi.org/10.1016/j.matlet.2020.128901

    Article  CAS  Google Scholar 

  3. Huang, L.-W., Vo, T.-G., and Chiang, C.-Y., Converting glycerol aqueous solution to hydrogen energy and dihydroxyacetone by the BiVO4 photoelectrochemical cell, Electrochim. Acta, 2019, vol. 322, p. 134725. https://doi.org/10.1016/j.electacta.2019.134725

    Article  CAS  Google Scholar 

  4. Tremouli, A., Vlassis, T., Antonopoulou, G., and Lyberatos, G., Anaerobic Degradation of Pure Glycerol for Electricity Generation using a MFC: The Effect of Substrate Concentration, Waste Biomass Valorization, 2016, vol. 7 (6), p. 1339. https://doi.org/10.1007/s12649-016-9498-0

    Article  CAS  Google Scholar 

  5. Nascimento, L.L., Marinho, J.Z., dos Santos, A.L.R., de Faria, A.M., Souza, R.A.C., Wang, C., and Patrocinio, A.O.T., Photoelectrochemical reforming of glycerol by Bi2WO6 photoanodes: Role of the electrolyte pH on the H2 evolution efficiency and product selectivity, Appl. Catal. A: General, 2022, vol. 646, p. 118867. https://doi.org/10.1016/j.apcata.2022.118867

    Article  CAS  Google Scholar 

  6. Sui, M., Dong, Y., Bai, W., Ambuchi, J.J., and You, H., In-situ utilization of generated electricity in a photocatalytic fuel cell to enhance pollutant degradation, J. Photochem. Photobiol. A: Chemistry, 2017, vol. 343, p. 51. https://doi.org/10.1016/j.jphotochem.2017.04.017

    Article  CAS  Google Scholar 

  7. Ye, F., Wang, T., Quan, X., Yu, H., and Chen, S., Constructing efficient WO3-FPC system for photoelectrochemical H2O2 production and organic pollutants degradation, Chem. Engng. J., 2020, vol. 389, p. 123427. https://doi.org/10.1016/j.cej.2019.123427

    Article  CAS  Google Scholar 

  8. Shandilya, P., Sambyal, S., Sharma, R., Mandyal, P., and Fang, B., Properties, optimized morphologies, and advanced strategies for photocatalytic applications of WO3 based photocatalysts, J. Hazardous Mater., 2022, vol. 428, p. 128218. https://doi.org/10.1016/j.jhazmat.2022.128218

    Article  CAS  Google Scholar 

  9. Abbaspoor, M., Aliannezhadi, M., and Tehrani, F.S., Effect of solution pH on as-synthesized and calcined WO3 nanoparticles synthesized using sol-gel method, Optical Mater., 2021, vol. 121, p. 111552. https://doi.org/10.1016/j.optmat.2021.111552

    Article  CAS  Google Scholar 

  10. Karthikeyan, S., Selvapandiyan, M., Sasikumar, P., Parthibavaraman, M., Nithiyanantham, S., and Srisuvetha, V.T., Investigation on the properties of vanadium doping WO3 nanostructures by hydrothermal method, Mater. Sci. Energy Technol., 2022, vol. 5, p. 411. https://doi.org/10.1016/j.mset.2022.10.002

    Article  CAS  Google Scholar 

  11. Bhagyashri, B., Tavade, A.K., Kambl, P., Padavi, M.N., Sharma, K.K.K., Adzhalkar, B.D., and Taiade, Sh.N., Hydrothermal synthesis of WO3 for the electrochemical oxidation paracetamol: the paracetamol microstructure sensor, Elektrokhimiya, 2020. vol. 56, p. 844. https://doi.org/10.31857/S0424857020050047

    Article  Google Scholar 

  12. Kromer, M.L., Monzó, J., Lawrence, M.J., Kolodziej, A., Gossage, Z.T., Simpson, B.H., Morandi, S., Yanson, A., Rodríguez-López, J., and Rodríguez, P., High-Throughput Preparation of Metal Oxide Nanocrystals by Cathodic Corrosion and Their Use as Active Photocatalysts, Langmuir, 2017, vol. 33 (46), p. 13295. https://doi.org/10.1021/acs.langmuir.7b02465

    Article  CAS  PubMed  Google Scholar 

  13. Gao, D., Li, H., Wei, P., Wang, Y., Wang, G., and Bao, X., Electrochemical synthesis of catalytic materials for energy catalysis, Chinese J. Catalysis, 2022, vol. 43 (4), p. 1001. https://doi.org/10.1016/S1872-2067(21)63940-2

    Article  CAS  Google Scholar 

  14. Lawrence, M.J., Kolodziej, A., and Rodriguez, P., Controllable synthesis of nanostructured metal oxide and oxyhydroxide materials via electrochemical methods, Current Opinion Electrochem., 2018, vol. 10, p. 7. https://doi.org/10.1016/j.coelec.2018.03.014

    Article  CAS  Google Scholar 

  15. Ulyankina, A., Molodtsova, T., Gorshenkov, M., Leontyev, I., Zhigunov, D., Konstantinova, E., Lastovina, T., Tolasz, J., Henych, J., Licciardello, N., Cuniberti, G., and Smirnova, N., Photocatalytic degradation of ciprofloxacin in water at nano-ZnO prepared by pulse alternating current electrochemical synthesis, J. Water Process Engineering, 2021, vol. 40, p. 101809. https://doi.org/10.1016/j.jwpe.2020.101809

    Article  Google Scholar 

  16. Molodtsova, T., Gorshenkov, M., Kubrin, S., Saraev, A., Ulyankina, A., and Smirnova, N., One-step access to bifunctional γ-Fe2O3/δ-FeOOH electrocatalyst for oxygen reduction reaction and acetaminophen sensing, J. Taiwan Inst. Chem. Engineers, 2022, vol. 140, p. 104569. https://doi.org/10.1016/j.jtice.2022.104569

    Article  CAS  Google Scholar 

  17. Molodtsova, T., Gorshenkov, M., Kolesnikov, E., Leontyev, I., Kaichev, V., Zhigunov, D., Faddeev, N., Kuriganova, A., and Smirnova, N., Fabrication of nano-In2O3 phase junction by pulse alternating current synthesis for enhanced photoelectrochemical performance: Unravelling the role of synthetic conditions, Ceram. Intern., 2023, vol. 49 (7), p. 10986. https://doi.org/10.1016/j.ceramint.2022.11.293

    Article  CAS  Google Scholar 

  18. Tsarenko, A., Gorshenkov, M., Yatsenko, A., Zhigunov, D., Butova, V., Kaichev, V., and Ulyankina, A., Electrochemical Synthesis-Dependent Photoelectrochemical Properties of Tungsten Oxide Powders, ChemEngineering, 2022, vol. 6 (2), p. 31.

    Article  CAS  Google Scholar 

  19. Bourdin, M., Gaudon, M., Weill, F., Duttine, M., Gayot, M., Messaddeq, Y., and Cardinal, T., Nanoparticles (NPs) of WO3 – x Compounds by Polyol Route with Enhanced Photochromic Properties, Nanomaterials (Basel), 2019, vol. 9 (11). https://doi.org/10.3390/nano9111555

  20. Xu, J., Xu, X., Yi, H., Lv, Y., Xu, N., He, L., Chen, J., Kuang, X., and Huang, K., Electrical Properties, Defect Structures, and Ionic Conducting Mechanisms in Alkali Tungstate Li2W2O7, Inorganic Chem., 2021, vol. 60 (12), p. 8631. https://doi.org/10.1021/acs.inorgchem.1c00609

    Article  CAS  Google Scholar 

  21. Akihiko, K. and Hideki, K., Photocatalytic Activities of Na2W4O13 with Layered Structure, Chem. Lett., 1997, vol. 26 (5), p. 421. https://doi.org/10.1246/cl.1997.421

    Article  Google Scholar 

  22. Lee, S., Teshima, K., Fujisawa, M., Fujii, S., Endo, M., and Oishi, S., Fabrication of highly ordered, macroporous Na2W4O13 arrays by spray pyrolysis using polystyrene colloidal crystals as templates, Phys. Chem. Chem. Phys., 2009, vol. 11 (19), p. 3628. https://doi.org/10.1039/B821209K

    Article  CAS  PubMed  Google Scholar 

  23. Kumar, P., Singh, M., and Reddy, G.B., Core–Shell WO3–WS2 Nanostructured Thin Films via Plasma Assisted Sublimation and Sulfurization, ACS Appl. Nano Mater., 2019, vol. 2 (3), p. 1691. https://doi.org/10.1021/acsanm.9b00136

    Article  CAS  Google Scholar 

  24. Hu, Z., Zhang, H., Zhang, L., Cheng, C., and Man, J., Rapid and highly sensitive detection of formaldehyde at room temperature using rGO/WO3 nanocomposite, Appl. Phys. A, 2023, vol. 129 (2), p. 89. https://doi.org/10.1007/s00339-022-06375-2

    Article  CAS  Google Scholar 

  25. Ng, C., Ng, Y.H., Iwase, A., and Amal, R., Influence of Annealing Temperature of WO3 in Photoelectrochemical Conversion and Energy Storage for Water Splitting, ACS Appl. Mater. Interfaces, 2013, vol. 5 (11), p. 5269. https://doi.org/10.1021/am401112q

    Article  CAS  PubMed  Google Scholar 

  26. Kalamaras, E. and Lianos, P., Current Doubling effect revisited: Current multiplication in a PhotoFuelCell, J. Electroanal. Chem., 2015, vol. 751, p. 37. https://doi.org/10.1016/j.jelechem.2015.05.029

    Article  CAS  Google Scholar 

  27. Ibadurrohman, M. and Hellgardt, K., Photoelectrochemical performance of graphene-modified TiO2 photoanodes in the presence of glycerol as a hole scavenger, Int. J. Hydrogen Energy, 2014, vol. 39 (32), p. 18204. https://doi.org/10.1016/j.ijhydene.2014.08.142

    Article  CAS  Google Scholar 

  28. Lui, G., Jiang, G., Fowler, M., Yu, A., and Chen, Z., A high performance wastewater-fed flow-photocatalytic fuel cell, J. Power Sources, 2019, vol. 425, p. 69. https://doi.org/10.1016/j.jpowsour.2019.03.091

    Article  CAS  Google Scholar 

  29. Pan, D., Xiao, S., Chen, X., Li, R., Cao, Y., Zhang, D., Pu, S., Li, Z., Li, G., and Li, H., Efficient Photocatalytic Fuel Cell via Simultaneous Visible-Photoelectrocatalytic Degradation and Electricity Generation on a Porous Coral-like WO3/W Photoelectrode, Environmental Sci. Technol., 2019, vol. 53 (7), p. 3697. https://doi.org/10.1021/acs.est.8b05685

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 21-79-00079, https://rscf.ru/project/21-79-00079/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ulyankina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Delivered at the 20th All-Russian Meeting “Electrochemistry of Organic Compounds” (EKhOS-2022), Novocherkassk, October 18–22, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulyankina, A.A., Tsarenko, A.D., Molodtsova, T.A. et al. Electrochemical Synthesis of Tungsten Oxide in Chloride Solutions for Environmental Photocatalysis. Russ J Electrochem 59, 1047–1052 (2023). https://doi.org/10.1134/S1023193523120157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523120157

Keywords:

Navigation