Skip to main content

Advertisement

Log in

Anaerobic Degradation of Pure Glycerol for Electricity Generation using a MFC: The Effect of Substrate Concentration

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Alternative glycerol treatment and valorization, could be a promising solution, contributing to the biodiesel production economy. Thus, the potential of electricity generation from pure glycerol, using a two-chamber microbial fuel cell (MFC), was evaluated. The effect of glycerol concentration in a range of 0.5–5.2 g COD L−1 on MFC performance was examined. In order to achieve a stable MFC performance and a high power density, special attention was paid during the acclimation phase of the anaerobic consortium, which was performed using glucose, instead of glycerol, as substrate. The best performance of the cell was observed at a glycerol concentration of 3.2 g COD L−1. At this concentration, the Coulombic efficiency (CE) was 34.1 %, the chemical oxygen demand (COD) removal efficiency was approximately 99 % and the maximum power density was 65.4 mW m−2. Further increase of glycerol concentration to 5.2 g COD L−1 did not enhance the MFC performance, since the power density remained at 63.4 mW m−2, while the CE and the COD removal efficiency decreased to 22.1 and 81 %, respectively. The experimental results showed that glycerol is a suitable and promising substrate for power generation, using a simple two-chamber MFC and that acclimation of anaerobic sludge using glucose as substrate, is a suitable procedure for securing a stable MFC performance, even at high glycerol concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yazdani, S.S., Gonzalez, R.: Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 18, 213–219 (2007)

    Article  Google Scholar 

  2. Rashid, U., Anwar, F.: Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel 87, 265–273 (2008)

    Article  Google Scholar 

  3. Asad, R., Saman, W.R.G., Nomura, N., Sato, S., Matsumura, M.: Pretreatment and utilization of raw glycerol from sunflower oil biodiesel for growth and 1, 3- propanediol production by Clostridium butyricum. J. Chem. Technol. Biotechnol. 83, 1072–1080 (2008)

    Article  Google Scholar 

  4. Claude, S.: Research of new outlets for glycerol recent developments in France. Lipid Fett 101, 101–104 (1999)

    Article  Google Scholar 

  5. Ciriminna, R., Della Pina, C., Rossi, M., Pagliaro, M.: Understanding the glycerol market. Eur. J. Lipid Sci. Technol. 116, 1432–1439 (2014)

    Article  Google Scholar 

  6. Robra, S., Cruz, R.S., Oliveira, A.M., Neto, J.A.A., Santos, J.V.: Generation of biogas using crude glycerin from biodiesel production as a supplement to cattle slurry. Biomass Bioenergy 34, 1330–1335 (2010)

    Article  Google Scholar 

  7. Vlassis, T., Stamatelatou, A., Antonopoulou, G., Lyberatos, G.: Methane production via anaerobic digestion of glycerol: a comparison of conventional (CSTR) and high-rate digesters (PABR). J. Chem. Technol. Biotechnol. 88, 2000–2006 (2013)

    Google Scholar 

  8. Akutsu, Y., Lee, D.Y., Li, Y.Y., Noike, T.: Hydrogen production potentials and fermentative characteristics of various substrates with different heat-pretreated natural microflora. Int. J. Hydrogen Energy 34, 5365–5373 (2009)

    Article  Google Scholar 

  9. Seifert, K., Waligorska, M., Wojtowski, M., Laniecki, M.: Hydrogen generation from glycerol in batch fermentation process. Int. J. Hydrogen Energy 34, 3671–3678 (2009)

    Article  Google Scholar 

  10. Ito, T., Nakashimada, Y., Senba, K., Matsui, T., Nishio, N.: Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J. Biosci. Bioeng. 100(3), 260–265 (2005)

    Article  Google Scholar 

  11. Vlassis, T., Stamatelatou, A., Antonopoulou, G., Lyberatos, G.: Anaerobic treatment of glycerol for methane and hydrogen production. Glob. Nest J. 14(2), 149–156 (2012)

    Google Scholar 

  12. Bond, D.R., Holmes, D.E., Tender, L.M., Lovley, D.R.: Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295, 483–485 (2002)

    Article  Google Scholar 

  13. Rabaey, K., Rodríguez, J., Blackall, L.L., Keller, J., Gross, P., Batstone, D., Verstraete, W., Nealson, K.H.: Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J. 1, 9–18 (2007)

    Article  Google Scholar 

  14. Rabaey, K., Butzer, S., Brown, S., Keller, J., Rozendal, R.A.: High current generation coupled to caustic production using a lamellar bioelectrochemical system. Environ. Sci. Technol. 44(11), 4315–4321 (2010)

    Article  Google Scholar 

  15. Clauwaert, P., Ha, D., Verstraete, W.: Energy recovery from energy rich vegetable products with microbial fuel cells. Biotechnol. Lett. 30, 1947–1951 (2008)

    Article  Google Scholar 

  16. Feng, Y., Yang, Q., Wang, X., Liu, Y., Lee, H., Ren, N.: Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell. Bioresour. Technol. 102, 411–415 (2011)

    Article  Google Scholar 

  17. Chookaew, T., Prasertsan, P., Ren, Z.J.: Two stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell. New Biotechnol. 31(2), 179–184 (2014)

    Article  Google Scholar 

  18. Sharma, Y., Parnas, R., Li, B.: Bioenergy production from glycerol in hydrogen producing bioreactors (HPBs) and microbial fuel cells (MFCs). Int. J. Hydrogen Energy 36, 3853–3861 (2011)

    Article  Google Scholar 

  19. Guimaraes, A.Q., Linares, J.J.: Glycerol utilization in microbial fuel cells: conditioning stage and influence of the glycerol concentration. J. Electrochem. Soc. 161(1), F125–F132 (2014)

    Article  Google Scholar 

  20. Nimje, V.R., Chen, C.Y., Chen, C.C., Chen, H.R., Tseng, M.J., Jean, J.S., Chang, Y.F.: Glycerol degradation in single-chamber microbial fuel cells. Bioresour. Technol. 102, 2629–2634 (2011)

    Article  Google Scholar 

  21. Reiche, A., Kirkwood, K.M.: Comparison of Escherichia coli and anaerobic consortia derived from compost as anodic biocatalysts in a glycerol-oxidizing microbial fuel cell. Bioresour. Technol. 123, 318–323 (2012)

    Article  Google Scholar 

  22. Bond, D.R., Lovely, D.R.: Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69, 1548–1555 (2003)

    Article  Google Scholar 

  23. Aelterman, P., Freguia, S., Keller, J., Verstraete, W., Rabaey, K.: The anode potential regulates bacterial activity in microbial fuel cells. Appl. Microbiol. Biotechnol. 78, 409–418 (2008)

    Article  Google Scholar 

  24. Logan, B.E., Cheng, S., Watson, V., Estadt, G.: Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 41, 3341–3346 (2007)

    Article  Google Scholar 

  25. Skiadas, I.V., Lyberatos, G.: The periodic anaerobic baffled reactor. Water Sci. Technol. 38, 401–408 (1998)

    Article  Google Scholar 

  26. Antonopoulou, G., Stamatelatou, K., Bebelis, S., Lyberatos, G.: Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell. Biochem. Eng. J. 50(1–2), 10–15 (2010)

    Article  Google Scholar 

  27. Logan, B.E., Hamelers, B., Rozendal, R., Schroeder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., Rabaey, K.: Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40, 5181–5192 (2006)

    Article  Google Scholar 

  28. APHA, AWWA, WPCF, American Public Health Association, American Water Works Association, Water Environment Federation: Standard Methods for the Examination of Water and Wastewater, 19th edn. American Public Health Association, Washington DC (1995)

    Google Scholar 

  29. Oh, S.E., Min, B., Logan, B.E.: Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 38, 4900–4904 (2004)

    Article  Google Scholar 

  30. Sharma, Y., Li, B.: The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs). Bioresour. Technol. 101, 1844–1850 (2010)

    Article  Google Scholar 

  31. Zhang, Y., Min, B., Huang, L., Angelidaki, I.: Electricity generation and microbial community response to substrate changes in microbial fuel cell. Bioresour. Technol. 102(2), 1166–1173 (2011)

    Article  Google Scholar 

  32. Liu, H., Logan, B.E.: Electricity generation using an air–cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38, 4040–4046 (2004)

    Article  Google Scholar 

  33. Min, B., Cheng, S., Logan, B.E.: Electricity generation using membrane and salt bridge microbial fuel cells. Water Res. 39, 1675–1686 (2005)

    Article  Google Scholar 

  34. Lefebvre, O., Tan, Z., Kharkwal, S., Ng, H.Y.: Effect of increasing anodic NaCl concentration on microbial fuel cell performance. Bioresour. Technol. 112, 336–340 (2012)

    Article  Google Scholar 

  35. Logan, B.E., Murano, C., Scott, K., Gray, N.D., Head, I.M.: Electricity generation from cysteine in a microbial fuel cell. Water Res. 39, 942–952 (2005)

    Article  Google Scholar 

  36. Chaudhuri, S.K., Lovley, D.R.: Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21, 1229–1232 (2003)

    Article  Google Scholar 

  37. Tremouli, A., Antonopoulou, G., Bebelis, S., Lyberatos, G.: Operation and characterization of a microbial fuel cell fed with pretreated cheese whey at different organic loads. Bioresour. Technol. 131, 380–389 (2013)

    Article  Google Scholar 

  38. Huang, L., Zeng, R.J., Angelidaki, I.: Electricity production from xylose using a mediator-less microbial fuel cell. Bioresour. Technol. 99(10), 4178–4184 (2008)

    Article  Google Scholar 

  39. Park, D.H., Zeikus, J.G.: Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 81, 348–355 (2003)

    Article  Google Scholar 

  40. Ghangrekar, M.M., Shinde, V.B.: Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresour. Technol. 98, 2879–2885 (2007)

    Article  Google Scholar 

  41. Behera, M., Ghangrekar, M.M.: Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresour. Technol. 100, 5114–5121 (2009)

    Article  Google Scholar 

  42. Min, B., Kim, J.R., Oh, S.E., Regan, J.M., Logan, B.E.: Electricity generation from swine wastewater using microbial fuel cells. Water Res. 39, 4961–4968 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerasimos Lyberatos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tremouli, A., Vlassis, T., Antonopoulou, G. et al. Anaerobic Degradation of Pure Glycerol for Electricity Generation using a MFC: The Effect of Substrate Concentration. Waste Biomass Valor 7, 1339–1347 (2016). https://doi.org/10.1007/s12649-016-9498-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9498-0

Keywords

Navigation