Skip to main content
Log in

Synthesis and Properties of ZnO/ZnWO4-Nanocomposites for Photoelectrochemical Applications

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A series of ZnO/ZnWO4 nanocomposites with different ZnWO4 content, are electrochemically synthesized under pulse alternating current starting from ZnO and WO3 nanopowders. A complex of physicochemical methods (X-ray diffraction analysis, Raman spectroscopy, transmission electron microscopy, energy dispersive X-ray microanalysis) was used to study the composition and structural characteristics of the obtained materials. The nanocomposite with optimal composition (ZnWO4 ~6%) was used as a photoanode material for a flow photocatalytic fuel cell with sulfate electrolyte added with organic and inorganic fuel. The maximum values of Eoc (850 mV) and Pmax (85.8 μW/cm2) are achieved using Na2SO4 with the addition of glucose as a fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Isaev, A.B., Shabanov, N.S., Sobola, D., Kaviyarasu, K., Ismailov, A.M., and Omarov, G.M., ZnO/Chalcogenides Semiconductor Heterostructures for Photoelectrochemical Water Splitting, in Nanomaterials for Energy Conversion, Biomedical and Environmental Applications, Kasinathan, K., Elshikh, M.S., and Al Farraj, D.A.-A., Eds. Singapore: Springer Nature, 2022, p. 3-35. https://doi.org/10.1007/978-981-19-2639-6_1

    Book  Google Scholar 

  2. Grinberg, V.A., Emets, V.V., Maiorova, N.A., Maslov, D.A., Averin, A.A., Polyakov, S.N., Molchanov, S.P., Levin, I.S., and Tsodikov, M.V., Photoelectrochemical Activity of Nanosized Titania, Doped with Bismuth and Lead, in Visible Light Region, Prot. Met. Phys. Chem. Surf., 2019, vol 55, p. 55. https://doi.org/10.1134/S207020511901012X

    Article  CAS  Google Scholar 

  3. Kageshima, Y., Wada, H., Teshima, K., and Nishikiori, H., Hydrogen evolution and electric power generation through photoelectrochemical oxidation of cellulose dissolved in aqueous solution, Appl. Catal. B: Environ., 2023, vol. 327, p. 122431. https://doi.org/10.1016/j.apcatb.2023.122431

    Article  CAS  Google Scholar 

  4. Ismael, M., Latest progress on the key operating parameters affecting the photocatalytic activity of TiO2-based photocatalysts for hydrogen fuel production: A comprehensive review, Fuel, 2021, vol. 303, p. 121207. https://doi.org/10.1016/j.fuel.2021.121207

    Article  CAS  Google Scholar 

  5. Molodtsova, T., Gorshenkov, M., Kolesnikov, E., Leontyev, I., Kaichev, V., Zhigunov, D., Faddeev, N., Kuriganova, A., and Smirnova, N., Fabrication of nano-In2O3 phase junction by pulse alternating current synthesis for enhanced photoelectrochemical performance: Unravelling the role of synthetic conditions, Ceram. Int., 2023, vol. 49, p. 10986. https://doi.org/10.1016/j.ceramint.2022.11.293

    Article  CAS  Google Scholar 

  6. Tsarenko, A., Gorshenkov, M., Yatsenko, A., Zhigu-nov, D., Butova, V., Kaichev, V., and Ulyankina, A., Electrochemical Synthesis-Dependent Photoelectrochemical Properties of Tungsten Oxide Powders, ChemEngineering, 2022, vol. 62, p. 31. https://doi.org/10.3390/chemengineering6020031

    Article  CAS  Google Scholar 

  7. Mika, K., Syrek, K., Uchacz, T., Sulka, G.D., and Zaraska, L., Dark nanostructured ZnO films formed by anodic oxidation as photoanodes in photoelectrochemical water splitting, Electrochim. Acta, 2022, vol. 414, p. 140176. https://doi.org/10.1016/j.electacta.2022.140176

    Article  CAS  Google Scholar 

  8. Wannapop, S. and Somdee, A., Effect of citric acid on the synthesis of ZnWO4/ZnO nanorods for photoelectrochemical water splitting, Inorg. Chem. Commun., 2020, vol. 115, p. 107857. https://doi.org/10.1016/j.inoche.2020.107857

    Article  CAS  Google Scholar 

  9. Navarro-Gázquez, P.J., Blasco-Tamarit, E., Muñoz-Portero, M.J., Solsona, B., Fernández-Domene, R.M., Sánchez-Tovar, R., and García-Antón, J., Influence of Zn(NO3)2 concentration during the ZnO electrodeposition on TiO2 nanosponges used in photoelectrochemical applications, Ceram. Int., 2022, vol. 48, p. 14460. https://doi.org/10.1016/j.ceramint.2022.01.339

    Article  CAS  Google Scholar 

  10. Chen, Y., Wang, L., Gao, R., Zhang, Y.-C., Pan, L., Huang, C., Liu, K., Chang, X.-Y., Zhang, X., and Zou, J.-J., Polarization-Enhanced direct Z-scheme ZnO-WO3–x nanorod arrays for efficient piezoelectric-photoelectrochemical Water splitting, Appl. Catal. B: Environ., 2019, vol. 259, p. 118079. https://doi.org/10.1016/j.apcatb.2019.118079

    Article  CAS  Google Scholar 

  11. Uchiyama, H., Nagao, R., and Kozuka, H., Photoelectrochemical properties of ZnO–SnO2 films prepared by sol–gel method, J. Alloys Compd., 2013, vol. 554, p. 122. https://doi.org/10.1016/j.jallcom.2012.11.196

    Article  CAS  Google Scholar 

  12. He, G., Mi, Y., Wang, D., Zhang, B., Zheng, D., Bai, Y., and Shi, Z., Synthesis Methods and Applications of Semiconductor Material ZnWO4 with Multifunctions and Multiconstructions, Energy Technol., 2021, vol. 9, p. 2100733. https://doi.org/10.1002/ente.202100733

    Article  CAS  Google Scholar 

  13. Jaramillo-Páez, C., Navío, J.A., Puga, F., and Hidalgo, M.C., Sol–gel synthesis of ZnWO4–(ZnO) composite materials. Characterization and photocatalytic properties, J. Photochem. Photobiol. A: Chem., 2021, vol. 404, p. 112962. https://doi.org/10.1016/j.jphotochem.2020.112962

    Article  CAS  Google Scholar 

  14. Gao, D., Li, H., Wei, P., Wang, Y., Wang, G., and Bao, X., Electrochemical synthesis of catalytic materials for energy catalysis, Chinese J. Catal., 2022, vol. 43, p. 1001. https://doi.org/10.1016/S1872-2067(21)63940-2

    Article  CAS  Google Scholar 

  15. Kromer, M.L., Monzó, J., Lawrence, M.J., Kolodziej, A., Gossage, Z.T., Simpson, B.H., Morandi, S., Yanson, A., Rodríguez-López, J., and Rodríguez, P., High-Throughput Preparation of Metal Oxide Nanocrystals by Cathodic Corrosion and Their Use as Active Photocatalysts, Langmuir, 2017, vol. 33, p. 13295. https://doi.org/10.1021/acs.langmuir.7b02465

    Article  CAS  PubMed  Google Scholar 

  16. Ulyankina, A., Molodtsova, T., Gorshenkov, M., Leontyev, I., Zhigunov, D., Konstantinova, E., Lastovina, T., Tolasz, J., Henych, J., Licciardello, N., Cuniberti, G., and Smirnova, N., Photocatalytic degradation of ciprofloxacin in water at nano-ZnO prepared by pulse alternating current electrochemical synthesis, J. Water Process. Eng., 2021, vol. 40, p. 101809. https://doi.org/10.1016/j.jwpe.2020.101809

    Article  Google Scholar 

  17. Mediouni, N., Guillard, C., Dappozze, F., Khrouz, L., Parola, S., Colbeau-Justin, C., Amara, A.B.H., Rhaiem, H.B., Jaffrezic-Renault, N., and Namour, P., Impact of structural defects on the photocatalytic properties of ZnO, J. Hazard. Mater. Adv., 2022, vol. 6, p. 100081. https://doi.org/10.1016/j.hazadv.2022.100081

    Article  CAS  Google Scholar 

  18. Gonçalves, R.F., Longo, E., Marques, A.P.A., Silva, M.D.P., Cavalcante, L.S., Nogueira, I.C., Pinatti, I.M., Pereira, P.F.S., and Godinho, M.J., Structural investigation and photoluminescent properties of ZnWO4:Dy3+ nanocrystals, J. Mater. Sci. Mater. Electron., 2017, vol. 28, p. 15466. https://doi.org/10.1007/s10854-017-7434-0

    Article  CAS  Google Scholar 

  19. Wei, Y., Wang, L., and Chen, C., Yttrium doping enhances the photoelectrochemical water splitting performance of ZnO nanorod array films, J. Alloys Compd, 2022, vol. 896, p. 163144. https://doi.org/10.1016/j.jallcom.2021.163144

    Article  CAS  Google Scholar 

  20. Masoumi, Z., Tayebi, M., Kolaei, M., and Lee, B.-K., Improvement of surface light absorption of ZnO photoanode using a double heterojunction with α-Fe2O3/g-C3N4 composite to enhance photoelectrochemical water splitting, Appl. Surf. Sci., 2023, vol. 608, p. 154915. https://doi.org/10.1016/j.apsusc.2022.154915

    Article  CAS  Google Scholar 

  21. Li, P., Zhao, X., Jia, C.-J., Sun, H., Sun, L., Cheng, X., Liu, L., and Fan, W., ZnWO4/BiOI heterostructures with highly efficient visible light photocatalytic activity: the case of interface lattice and energy level match, J. Mater. Chem. A, 2013, vol. 1, p. 3421. https://doi.org/10.1039/C3TA00442B

    Article  CAS  Google Scholar 

  22. Hao, Y., Zhang, L., Zhang, Y., Zhao, L., and Zhang, B., Synthesis of pearl necklace-like ZnO–ZnWO4 heterojunctions with enhanced photocatalytic degradation of Rhodamine B, RSC Adv., 2017, vol. 7, p. 26179. https://doi.org/10.1039/C6RA28766B

    Article  CAS  Google Scholar 

  23. Savić, T.D., Validžić, I.L., Novaković, T.B., Vuko-vić, Z.M., and Čomor, M.I., A Synergy of ZnO and ZnWO4 in Composite Nanostructures Deduced from Optical Properties and Photocatalysis, J. Clust. Sci., 2013, vol. 24, p. 679.https://doi.org/10.1007/s10876-013-0562-7

    Article  CAS  Google Scholar 

  24. Leeladevi, K., Arunpandian, M., Vinoth Kumar, J., Chellapandi, T., Mathumitha, G., Lee, J.-W., and Nagarajan, E.R., CoWO4 decorated ZnO nanocomposite: Efficient visible-light-activated photocatalyst for mitigation of noxious pollutants, Physica B Condens. Matter, 2022, vol. 626, p. 413493. https://doi.org/10.1016/j.physb.2021.413493

    Article  CAS  Google Scholar 

  25. Kurenkova, A.Y., Yakovleva, A.Y., Saraev, A.A., Gerasimov, E.Y., Kozlova, E.A., and Kaichev, V.V., Copper-Modified Titania-Based Photocatalysts for the Efficient Hydrogen Production under UV and Visible Light from Aqueous Solutions of Glycerol, Nanomaterials, 2022, vol. 12, p. 3106. https://doi.org/10.3390/nano12183106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sena, I.C., Sales, D.d.O., Andrade, T.S., Rodriguez, M., da Silva, A.C., Nogueira, F.G.E., Rodrigues, J.L., de Mesquita, J.P., and Pereira, M.C., Photoassisted chemical energy conversion into electricity using a sulfite‑iron photocatalytic fuel cell, J. Electroanal. Chem., 2021, vol. 881, p. 114940. https://doi.org/10.1016/j.jelechem.2020.114940

    Article  CAS  Google Scholar 

  27. He, L., Yang, Z., Gong, C., Liu, H., Zhong, F., Hu, F., Zhang, Y., Wang, G., and Zhang, B., The dual-function of photoelectrochemical glucose oxidation for sensor application and solar-to-electricity production, J. Electroanal. Chem., 2021, vol. 882, p. 114912. https://doi.org/10.1016/j.jelechem.2020.114912

    Article  CAS  Google Scholar 

  28. Yong, Z.-J., Lam, S.-M., Sin, J.-C., Zeng, H., Mohamed, A.R., and Jaffari, Z.H., Boosting sunlight-powered photocatalytic fuel cell with S-scheme Bi2WO6/ZnO nanorod array composite photoanode, Inorg. Chem. Commun., 2022, vol. 143, p. 109826. https://doi.org/10.1016/j.inoche.2022.109826

    Article  CAS  Google Scholar 

  29. Lam, S.-M., Sin, J.-C., Lin, H., Li, H., Lim, J.W., and Zeng, H., A Z-scheme WO3 loaded-hexagonal rod-like ZnO/Zn photocatalytic fuel cell for chemical energy recuperation from food wastewater treatment, Appl. Surf. Sci., 2020, vol. 514, p. 145945. https://doi.org/10.1016/j.apsusc.2020.145945

    Article  CAS  Google Scholar 

  30. Xie, S., Ouyang, K., and Shao, Y., A solar responsive photocatalytic fuel cell with a heterostructured ZnFe2O4/TiO2-NTs photoanode and an air-breathing cathode, Int. J. Hydrogen Energy, 2017, vol. 42, p. 29201. https://doi.org/10.1016/j.ijhydene.2017.10.059

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 21-79-00079, https://rscf.ru/project/21-79-00079/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ulyankina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Delivered at the 20th All-Russian Meeting “Electrochemistry of Organic Compounds (EKhOS-2022), Novocherkassk, October 18–22, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulyankina, A.A., Tsarenko, A.D., Molodtsova, T.A. et al. Synthesis and Properties of ZnO/ZnWO4-Nanocomposites for Photoelectrochemical Applications. Russ J Electrochem 59, 1032–1038 (2023). https://doi.org/10.1134/S1023193523120145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523120145

Keywords:

Navigation