Skip to main content

ZnO/Chalcogenides Semiconductor Heterostructures for Photoelectrochemical Water Splitting

  • Chapter
  • First Online:
Nanomaterials for Energy Conversion, Biomedical and Environmental Applications

Abstract

Photoelectrochemical water splitting with sunlight irradiated to produce hydrogen belongs to promising approaches due to the simplicity of the constructive implementation and ease of control. This review article discusses the synthesis of ZnO, and metal chalcogenide-based heterostructures and their use in photoelectrochemical hydrogen production. The use of ZnO and metal chalcogenides heterostructures improves the absorption of sunlight in the near-infrared spectrum, increase the ability of photoelectrochemical splitting of water, and reduce the recombination of charge carriers. At this rate, metal chalcogenides have a function of electron or hole acceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xu Y, Zhang B (2019) Recent advances in electrochemical hydrogen production from water assisted by alternative oxidation reactions. ChemElectroChem 6:3214–3226

    Article  CAS  Google Scholar 

  2. Wang M, Chen L, Sun L (2012) Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts. Energy Environ Sci 5:6763–6778

    Article  CAS  Google Scholar 

  3. Chen Z, Wei W, Ni BJ (2021) Cost-effective catalysts for renewable hydrogen production via electrochemical water splitting: recent advances. Curr Opin Green Sustain Chem 27:100398

    Article  CAS  Google Scholar 

  4. Mohd Shah NRA et al (2021) Current progress on 3D graphene-based photocatalysts: from synthesis to photocatalytic hydrogen production. Int J Hydrogen Energy 46:9324–9340

    Google Scholar 

  5. Yang Y et al (2021) Recent advances in application of transition metal phosphides for photocatalytic hydrogen production. Chem Eng J 405:126547

    Article  CAS  Google Scholar 

  6. Kumaravel V, Mathew S, Bartlett J, Pillai SC (2019) Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances. Appl Catal B Environ 244:1021–1064

    Article  CAS  Google Scholar 

  7. Corredor J, Rivero MJ, Rangel CM, Gloaguen F, Ortiz I (2019) Comprehensive review and future perspectives on the photocatalytic hydrogen production. J Chem Technol Biotechnol 94:3049–3063

    Article  CAS  Google Scholar 

  8. Sarkar J, Bhattacharyya S (2012) Application of graphene and graphene-based materials in clean energy-related devices Minghui. Arch Thermodyn 33:23–40

    Article  CAS  Google Scholar 

  9. Ahmed M, Dincer I (2019) A review on photoelectrochemical hydrogen production systems: challenges and future directions. Int J Hydrogen Energy 44:2474–2507

    Article  CAS  Google Scholar 

  10. Aydin MI, Karaca AE, Qureshy AMMI, Dincer I (2021) A comparative review on clean hydrogen production from wastewaters. J Environ Manage 279:111793

    Article  CAS  Google Scholar 

  11. Siavash Moakhar R et al (2021) Photoelectrochemical water-splitting using CuO-based electrodes for hydrogen production: a review. Adv Mater 33

    Google Scholar 

  12. Tournet J, Lee Y, Karuturi SK, Tan HH, Jagadish C (2020) III–V Semiconductor materials for solar hydrogen production: status and prospects. ACS Energy Lett 5:611–622

    Article  CAS  Google Scholar 

  13. Hisatomi T, Domen K (2019) Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat Catal 2:387–399

    Google Scholar 

  14. Alexander BD, Kulesza PJ, Rutkowska I, Solarska R, Augustynski J (2008) Metal oxide photoanodes for solar hydrogen production. J Mater Chem 18:2298–2303

    Article  CAS  Google Scholar 

  15. Liao CH, Huang CW, Wu JCS (2012) Hydrogen production from semiconductor-based photocatalysis via water splitting. Catalysts 2:490–516

    Google Scholar 

  16. Zhang K, Guo L (2013) Metal sulphide semiconductors for photocatalytic hydrogen production. Catal Sci Technol 3:1672–1690

    Article  CAS  Google Scholar 

  17. Tahir MB et al (2020) Recent advances on photocatalytic nanomaterials for hydrogen energy evolution in sustainable environment. Int J Environ Analyt Chem 101:2016–2034.https://doi.org/10.1080/03067319.2019.1691188

  18. El Nazer HA, Mohamed YMA (2021) Chalcogenide-based nanomaterials as photocatalysts for water splitting and hydrogen production. Chalcogenide-Based Nanomater Photocatal 173–183 https://doi.org/10.1016/B978-0-12-820498-6.00007-X

  19. Saraswat SK, Rodene DD, Gupta RB (2018) Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light. Renew Sustain Energy Rev 89:228–248

    Article  CAS  Google Scholar 

  20. Reddy CV et al (2020) Hetero-nanostructured metal oxide-based hybrid photocatalysts for enhanced photoelectrochemical water splitting—a review. Int J Hydrogen Energy 45:18331–18347

    Article  CAS  Google Scholar 

  21. Desai MA, Vyas AN, Saratale GD, Sartale SD (2019) Zinc oxide superstructures: recent synthesis approaches and application for hydrogen production via photoelectrochemical water splitting. Int J Hydrogen Energy 44:2091–2127

    Article  CAS  Google Scholar 

  22. Altaf CT et al (2020) Highly efficient 3D-ZnO nanosheet photoelectrodes for solar-driven water splitting: chalcogenide nanoparticle sensitization and mathematical modeling. J Alloys Compd 828:154472

    Article  CAS  Google Scholar 

  23. Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sustain Energy Rev 81:536–551

    Article  CAS  Google Scholar 

  24. Zhang X et al (2019) Fabrication of 3-D ZnO/CN nanorods for photo-/electrocatalytic water splitting: an efficient morphology for charge carriers transportation. Int J Hydrogen Energy 44:21821–21836

    Article  CAS  Google Scholar 

  25. Sreedhar A, Neelakanta Reddy I, Ta QTH, Namgung G, Noh JS (2019) Plasmonic Ag nanowires sensitized ZnO flake-like structures as a potential photoanode material for enhanced visible light water splitting activity. J Electroanal Chem 832:426–435

    Google Scholar 

  26. Abdullayeva N et al (2019) Investigation of strain effects on photoelectrochemical performance of flexible ZnO electrodes. Sci Rep 9:1–14

    Article  CAS  Google Scholar 

  27. Barreca D et al (2017) Vapor phase fabrication of nanoheterostructures based on ZnO for photoelectrochemical water splitting. Adv Mater Interfaces 4:1–9

    Google Scholar 

  28. Desai MA, Vyas AN, Saratale GD, Sartale SD (2019) Zinc oxide superstructures: recent synthesis approaches and application for hydrogen production via photoelectrochemical water splitting. Int J Hydrogen Energy 2091–2127. https://doi.org/10.1016/j.ijhydene.2018.08.042

  29. Lu X, Liu Z (2017) Efficient all p-type heterojunction photocathodes for photoelectrochemical water splitting. Dalt Trans 46:7351–7360

    Article  CAS  Google Scholar 

  30. Eftekhari A, Babu VJ, Ramakrishna S (2017) Photoelectrode nanomaterials for photoelectrochemical water splitting. Int J Hydrogen Energy 42:11078–11109

    Article  CAS  Google Scholar 

  31. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Google Scholar 

  32. Lu Q, Yu Y, Ma Q, Chen B, Zhang H (2016) 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv Mater 28:1917–1933

    Article  CAS  Google Scholar 

  33. Qu Y, Duan X (2013) Progress, challenge and perspective of heterogeneous photocatalysts. Chem Soc Rev 42:2568–2580

    Article  CAS  Google Scholar 

  34. Ma M et al (2020) Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting. J Semicond 41:091702. https://doi.org/10.1088/1674-4926/41/9/091702

  35. Ma S, Xue J, Zhou Y, Zhang Z (2014) Photochemical synthesis of ZnO/Ag2O heterostructures with enhanced ultraviolet and visible photocatalytic activity. J Mater Chem A 2:7272–7280

    Article  CAS  Google Scholar 

  36. Rai SC et al (2015) Piezo-phototronic effect enhanced UV/visible photodetector based on fully wide band gap type-II ZnO/ZnS core/shell nanowire array. ACS Nano 9:6419–6427

    Article  CAS  Google Scholar 

  37. Chen YC et al (2015) ZnO-graphene composites as practical photocatalysts for gaseous acetaldehyde degradation and electrolytic water oxidation. Appl Catal A Gen 490:1–9

    Article  CAS  Google Scholar 

  38. Wang T, Lv R, Zhang P, Li C, Gong J (2015) Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting. Nanoscale 7:77–81

    Article  CAS  Google Scholar 

  39. Shao M, Ning F, Wei M, Evans DG, Duan X (2014) Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water splitting. Adv Funct Mater 24:580–586

    Article  CAS  Google Scholar 

  40. Patel PP et al (2015) Nitrogen and cobalt co-doped zinc oxide nanowires—viable photoanodes for hydrogen generation via photoelectrochemical water splitting. J Power Sources 299:11–24

    Article  CAS  Google Scholar 

  41. Kargar A et al (2013) ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano 7:11112–11120

    Article  CAS  Google Scholar 

  42. Kim JK et al (2015) Nano carbon conformal coating strategy for enhanced photoelectrochemical responses and long-term stability of ZnO quantum dots. Nano Energy 13:258–266

    Article  CAS  Google Scholar 

  43. Chandrasekaran S, Chung JS, Kim EJ, Hur SH (2016) Exploring complex structural evolution of graphene oxide/ZnO triangles and its impact on photoelectrochemical water splitting. Chem Eng J 290:465–476

    Article  CAS  Google Scholar 

  44. Guo CX, Dong Y, Yang HB, Li CM (2013) Graphene quantum dots as a green sensitizer to functionalize ZnO nanowire arrays on F-doped SnO2 glass for enhanced photoelectrochemical water splitting. Adv Energy Mater 3:997–1003

    Google Scholar 

  45. Zong X et al (2013) Activation of photocatalytic water oxidation on N-doped ZnO bundle-like nanoparticles under visible light. J Phys Chem C 117:4937–4942

    Article  CAS  Google Scholar 

  46. Barreca D et al (2017) Vapor phase fabrication of nanoheterostructures based on ZnO for photoelectrochemical water splitting. Adv Mater Interfaces 4:1700161

    Google Scholar 

  47. Liu C et al (2017) Electrodeposition of ZnO nanoflake-based photoanode sensitized by carbon quantum dots for photoelectrochemical water oxidation. Ceram Int 43:5329–5333

    Article  CAS  Google Scholar 

  48. Li C et al (2015) 3D ZnO/Au/CdS sandwich structured inverse opal as photoelectrochemical anode with improved performance. Adv Mater Interfaces 2. https://doi.org/10.1002/admi.201500428

  49. Li Y et al (2012) ZnO/CuInS2 core/shell heterojunction nanoarray for photoelectrochemical water splitting. Int J Hydrogen Energy 37:15029–15037

    Article  CAS  Google Scholar 

  50. Wang M et al (2015) Construction of FeS2-sensitized ZnO@ZnS nanorod arrays with enhanced optical and photoresponse performances. Adv Mater Interfaces 2:1500163

    Google Scholar 

  51. Qiu Y et al (2019) Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. Sci Bull 64:1348–1380

    Article  CAS  Google Scholar 

  52. Tian W et al (2013) Low-cost fully transparent ultraviolet photodetectors based on electrospun ZnO-SnO2 heterojunction nanofibers. Adv Mater 25:4625–4630

    Article  CAS  Google Scholar 

  53. Kurnia F, Hart JN (2015) Band-gap control of zinc sulfide: towards an efficient visible-light-sensitive photocatalyst. ChemPhysChem 16:2397–2402

    Article  CAS  Google Scholar 

  54. D’Amico P, Calzolari A, Ruini A, Catellani A (2017) New energy with ZnS: novel applications for a standard transparent compound. Sci Rep 7:1–9

    Article  Google Scholar 

  55. Schrier J, Demchenko DO, Wang LW, Alivisatos AP (2007) Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Lett 7:2377–2382

    Article  CAS  Google Scholar 

  56. Jiang J, Wang M, Ma L, Chen Q, Guo L (2013) Synthesis of uniform ZnO/ZnS/CdS nanorod films with ion-exchange approach and photoelectrochemical performances. Int J Hydrogen Energy 38:13077–13083

    Article  CAS  Google Scholar 

  57. Ye HY et al (2018) Germanene on single-layer ZnSe substrate: Novel electronic and optical properties. Phys Chem Chem Phys 20:16067–16076

    Article  CAS  Google Scholar 

  58. Zaari H, Boujnah M, El Hachimi A, Benyoussef A, El Kenz A (2014) Optical properties of ZnTe doped with transition metals (Ti, Cr and Mn). Opt Quantum Electron 46:75–86

    Article  CAS  Google Scholar 

  59. Wei SH, Zhang SB, Zunger A (2000) First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys. J Appl Phys 87:1304–1311

    Article  CAS  Google Scholar 

  60. Yeon DH, Lee SM, Jo YH, Moon J, Cho YS (2014) Origin of the enhanced photovoltaic characteristics of PbS thin film solar cells processed at near room temperature. J Mater Chem A 2:20112–20117

    Article  CAS  Google Scholar 

  61. Miller EM et al (2016) Revisiting the valence and conduction band size dependence of PbS quantum dot thin films. ACS Nano 10:3302–3311

    Article  CAS  Google Scholar 

  62. Dolui K, Rungger I, Sanvito S (2013) Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate. Phys Rev B—Condens Matter Mater Phys 87:1–7

    Google Scholar 

  63. Hu Y et al (2015) Large-scale patterned ZnO nanorod arrays for efficient photoelectrochemical water splitting. Appl Surf Sci 339:122–127

    Article  CAS  Google Scholar 

  64. Hernández-Gordillo A, Tzompantzi F, Gómez R (2012) An efficient ZnS-UV photocatalysts generated in situ from ZnS(en) 0.5 hybrid during the H 2 production in methanol-water solution. Int J Hydrogen Energy 37:17002–17008

    Google Scholar 

  65. Zhang J et al (2013) Enhanced photocatalytic hydrogen production activities of Au-loaded ZnS flowers. ACS Appl Mater Interfaces 5:1031–1037

    Article  CAS  Google Scholar 

  66. Wu A et al (2015) ZnO-dotted porous ZnS cluster microspheres for high efficient, Pt-free photocatalytic hydrogen evolution. Sci Rep 5:1–9

    Google Scholar 

  67. Sang HX, Wang XT, Fan CC, Wang F (2012) Enhanced photocatalytic H2 production from glycerol solution over ZnO/ZnS core/shell nanorods prepared by a low temperature route. Int J Hydrogen Energy 37:1348–1355

    Article  CAS  Google Scholar 

  68. Wang Z, Cao SW, Loo SCJ, Xue C (2013) Nanoparticle heterojunctions in ZnS-ZnO hybrid nanowires for visible-light-driven photocatalytic hydrogen generation. CrystEngComm 15:5688–5693

    Article  CAS  Google Scholar 

  69. Gu X, Zhang S, Zhao Y, Qiang Y (2015) Band alignment of ZnO/ZnS heterojunction prepared through magnetron sputtering and measured by X-ray photoelectron spectroscopy. Vacuum 122:6–11

    Article  CAS  Google Scholar 

  70. Wang L et al (2018) Preparation of ZnO/ZnS thin films for enhancing the photoelectrochemical performance of ZnO. Vacuum 148:201–205

    Article  CAS  Google Scholar 

  71. Kushwaha A, Aslam M (2014) ZnS shielded ZnO nanowire photoanodes for efficient water splitting. Electrochim Acta 130:222–231

    Article  CAS  Google Scholar 

  72. Zhang X et al (2018) ZnO nanosheets with atomically thin ZnS overlayers for photocatalytic water splitting. J Mater Chem A 6:9057–9063

    Article  CAS  Google Scholar 

  73. Zhao H et al (2015) Facile preparation of a ZnS/ZnO nanocomposite for robust sunlight photocatalytic H2 evolution from water. RSC Adv 5:6494–6500

    Article  CAS  Google Scholar 

  74. Wei C et al (2019) Enhanced photoelectrochemical activities of ZnO nanorod arrays after a modification of ZnS or ZnIn2S4. J Electron Mater 48:7345–7351

    Article  CAS  Google Scholar 

  75. Hassan MA et al (2020) Single-step fabrication of 3D hierarchical ZnO/ZnS heterojunction branched nanowires by MOCVD for enhanced photoelectrochemical water splitting. J Mater Chem A 8:8300–8312

    Article  CAS  Google Scholar 

  76. Liu C et al (2017) Design of core–shell-structured ZnO/ZnS hybridized with graphite-like C3N4 for highly efficient photoelectrochemical water splitting. Adv Mater Interfaces 4:1–11

    Article  Google Scholar 

  77. Gao X, Wang J, Yu J, Xu H (2015) Novel ZnO-ZnS nanowire arrays with heterostructures and enhanced photocatalytic properties. CrystEngComm 17:6328–6337

    Article  CAS  Google Scholar 

  78. Chen HM et al (2011) A new approach to solar hydrogen production: a ZnO-ZnS solid solution nanowire array photoanode. Adv Energy Mater 1:742–747

    Article  CAS  Google Scholar 

  79. Piña-Pérez Y et al (2018) Novel ZnS-ZnO composite synthesized by the solvothermal method through the partial sulfidation of ZnO for H2 production without sacrificial agent. Appl Catal B Environ 230:125–134

    Article  Google Scholar 

  80. Sánchez-Tovar R, Fernández-Domene RM, Montañés MT, Sanz-Marco A, Garcia-Antón J (2016) ZnO/ZnS heterostructures for hydrogen production by photoelectrochemical water splitting. RSC Adv 6:30425–30435

    Article  Google Scholar 

  81. Brayek A et al (2018) The structural and the photoelectrochemical properties of ZnO-ZnS/ITO 1D hetero-junctions prepared by tandem electrodeposition and surface sulfidation: on the material processing limits. RSC Adv 8:11785–11798

    Article  CAS  Google Scholar 

  82. Cheon SY et al (2017) Sonochemical synthesis of ZnO-ZnS core-shell nanorods for enhanced photoelectrochemical water oxidation. J Am Ceram Soc 100:3825–3834

    Article  CAS  Google Scholar 

  83. Hassan MA, Johar MA, Waseem A, Bagal IV, Ha JS, Ryu SW (2019) Type-II ZnO/ZnS core-shell nanowires: earth-abundant photoanode for solar-driven photoelectrochemical water splitting. Optics Express 27:184–196

    Google Scholar 

  84. Kim H, Oh MH, Yang BL (2020) Photocorrosion of polyaniline-ZnS–ZnO photoelectrode for water splitting. Thin Solid Films 693:137678

    Article  CAS  Google Scholar 

  85. Liu Y et al (2015) Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting. Nano Res 8:2891–2900

    Article  CAS  Google Scholar 

  86. Ma D et al (2019) Au decorated hollow ZnO@ZnS heterostructure for enhanced photocatalytic hydrogen evolution: the insight into the roles of hollow channel and Au nanoparticles. Appl Catal B Environ 244:748–757

    Article  CAS  Google Scholar 

  87. Chang CJ, Huang KL, Chen JK, Chu KW, Hsu MH (2015) Improved photocatalytic hydrogen production of ZnO/ZnS based photocatalysts by Ce doping. J Taiwan Inst Chem Eng 55:82–89

    Article  CAS  Google Scholar 

  88. Madhusudan P et al (2019) Nature inspired ZnO/ZnS nanobranch-like composites, decorated with Cu(OH)2 clusters for enhanced visible-light photocatalytic hydrogen evolution. Appl Catal B Environ 253:379–390

    Article  CAS  Google Scholar 

  89. Sun D et al (2020) CdS/ZnS/ZnO ternary heterostructure nanofibers fabricated by electrospinning for excellent photocatalytic hydrogen evolution without co-catalyst. Chin J Catal 41:1421–1429

    Article  Google Scholar 

  90. Li C, Chen S, Wang Y, Hou Z (2019) ZnO/ZnS heterostructures grown on Zn foil substrate by hydrothermal method for photoelectrochemical water splitting. Int J Hydrogen Energy 44:25416–25427

    Article  CAS  Google Scholar 

  91. Zhang R et al (2017) Macroporous ZnO/ZnS/CdS composite spheres as efficient and stable photocatalysts for solar-driven hydrogen generation. J Mater Sci 52:11124–11134

    Article  CAS  Google Scholar 

  92. Yu YX, Ouyang WX, Liao ZT, Du BB, Zhang WD (2014) Construction of ZnO/ZnS/CdS/CuInS2 core-shell nanowire arrays via ion exchange: P-n junction photoanode with enhanced photoelectrochemical activity under visible light. ACS Appl Mater Interfaces 6:8467–8474

    Google Scholar 

  93. Liu Z et al (2014) Preparation of cauliflower-like CdS/ZnS/ZnO nanostructure and its photoelectric properties. J Nanoparticle Res 16

    Google Scholar 

  94. Han J et al (2014) Synthesis of metal sulfide sensitized zinc oxide-based core/shell/shell nanorods and their photoelectrochemical properties. J Power Sources 268:388–396

    Article  CAS  Google Scholar 

  95. Zhang Y et al (2016) Facile preparation of one dimension ZnO/chalcogenide semiconductor heterostructure for efficient photoelectrochemical water splitting. J Alloys Compd 685:581–586

    Article  CAS  Google Scholar 

  96. Yadian B et al (2017) Metal-sulfide-decorated ZnO/Si nano-heterostructure arrays with enhanced photoelectrochemical performance. Mater Res Bull 96:503–508

    Article  CAS  Google Scholar 

  97. Hsu MH, Chang CJ, Weng HT (2016) Efficient H2 production using Ag2S-coupled ZnO@ZnS core-shell nanorods decorated metal wire mesh as an immobilized hierarchical photocatalyst. ACS Sustain Chem Eng 4:1381–1391

    Article  CAS  Google Scholar 

  98. Ranjith KS et al (2020) Promotional effect of Cu 2 S-ZnS nanograins as a shell layer on ZnO nanorod arrays for boosting visible light photocatalytic H 2 evolution. J Phys Chem C 124:3610–3620

    Article  CAS  Google Scholar 

  99. Zhou J et al (2018) Cellular heterojunctions fabricated through the sulfurization of MOFs onto ZnO for high-efficient photoelectrochemical water oxidation. Appl Catal B Environ 226:421–428

    Article  CAS  Google Scholar 

  100. Wu LP, Zhang YL, Long LZ, Cen CP, Li XJ (2014) Effect of ZnS buffer layers in ZnO/ZnS/CdS nanorod array photoelectrode on the photoelectrochemical performance. RSC Adv 4:20716–20721

    Article  CAS  Google Scholar 

  101. Chang CJ, Lin YG, Weng HT, Wei YH (2018) Photocatalytic hydrogen production from glycerol solution at room temperature by ZnO-ZnS/graphene photocatalysts. Appl Surf Sci 451:198–206

    Article  CAS  Google Scholar 

  102. Castañeda C, Tzompantzi F, Rodríguez-Rodríguez A, Sánchez-Dominguez M, Gómez R (2018) Improved photocatalytic hydrogen production from methanol/water solution using CuO supported on fluorinated TiO2. J Chem Technol Biotechnol 93:1113–1120

    Article  Google Scholar 

  103. Zhang Q, Li H, Ma Y, Zhai T (2016) ZnSe nanostructures: synthesis, properties and applications. Prog Mater Sci 83:472–535

    Article  CAS  Google Scholar 

  104. Thirumavalavan S, Mani K, Sagadevan S (2016) A study of structural, morphological, optical and electrical properties of Zinc Selenide (ZnSe) thin film. Mater Today Proc 3:2305–2314

    Article  Google Scholar 

  105. Chen Y, Wang L, Wang W, Cao M (2017) Synthesis of Se-doped ZnO nanoplates with enhanced photoelectrochemical and photocatalytic properties. Mater Chem Phys 199:416–423

    Article  CAS  Google Scholar 

  106. Huang HC, Yang CL, Wang MS, Ma XG (2018) Optical absorption enhancement of Hg-doped ZnX (X= S, Se) for hydrogen production from water splitting driven by solar energy. Vacuum 157:36–44

    Article  CAS  Google Scholar 

  107. Gu Y et al (2019) Inverted ZnSe/CdSe core-shell nanobelts with type-I behavior: preparation, photoelectrochemical and photocatalytic performances. CrystEngComm 21:5482–5491

    Article  CAS  Google Scholar 

  108. Kuehnel MF et al (2019) ZnSe nanorods as visible-light absorbers for photocatalytic and photoelectrochemical H 2 evolution in water. Angew Chemie 131:5113–5117

    Article  Google Scholar 

  109. Ren C et al (2020) ZnSe nanoparticles with bulk WC as cocatalyst: a novel and noble-metal-free heterojunction photocatalyst for enhancing photocatalytic hydrogen evolution under visible light irradiation. Appl Mater Today 20:100731

    Article  Google Scholar 

  110. Tian P et al (2020) High photocatalytic and photoelectrochemical performance of a novel 0D/2D heterojunction photocatalyst constructed by ZnSe nanoparticles and MoSe2 nanoflowers. Ceram Int 46:13651–13659

    Article  CAS  Google Scholar 

  111. Liu S et al (2016) ZnSe sensitized and Co-Pi catalyzed TiO 2 nanowire array photoanode for solar-driven water splitting. J Electrochem Soc 163:H744–H749

    Article  CAS  Google Scholar 

  112. Sun C, Gu Y, Wen W, Zhao L (2018) ZnSe based semiconductor core-shell structures: from preparation to application. Opt Mater (Amst) 81:12–22

    Article  CAS  Google Scholar 

  113. Wang W et al (2015) Ultrawide photoresponse in ZnO/ZnSe coaxial nanowires with a threshold of 0.8 eV. Int J Hydrogen Energy 40:10788–10794

    Google Scholar 

  114. Zhang J et al (2020) Excellent photoelectrochemical hydrogen evolution performance of FeSe2 nanorod/ZnSe 0D/1D heterostructure as efficiency carriers migrate channel. Int J Hydrogen Energy 45:8526–8539

    Article  CAS  Google Scholar 

  115. Hewa-Kasakarage NN et al (2009) Radiative recombination of spatially extended excitons in (ZnSe/CdS)/CdS heterostructured nanorods. J Am Chem Soc 131:1328–1334

    Article  CAS  Google Scholar 

  116. Hewa-Kasakarage NN et al (2010) Ultrafast carrier dynamics in type II ZnSe/CdS/ZnSe nanobarbells. ACS Nano 4:1837–1844

    Article  CAS  Google Scholar 

  117. Verma S, Kaniyankandy S, Ghosh HN (2013) Charge separation by indirect bandgap transitions in CdS/ZnSe type-II core/shell quantum dots. J Phys Chem C 117:10901–10908

    Article  CAS  Google Scholar 

  118. Zhang Y et al (2012) ZnO/ZnSe type II core-shell nanowire array solar cell. Sol Energy Mater Sol Cells 102:15–18

    Article  CAS  Google Scholar 

  119. Ghoul M et al (2015) Synthesis of core/shell ZnO/ZnSe nanowires using novel low cost two-steps electrochemical deposition technique. J Alloys Compd 647:660–664

    Article  CAS  Google Scholar 

  120. Kozytskiy AV, Stroyuk OL, Kuchmiy SY (2014) Inorganic photoelectrochemical solar cells based on nanocrystalline ZnO/ZnSe and ZnO/CuSe heterostructures. Catal Today 230:227–233

    Article  CAS  Google Scholar 

  121. Cho S et al (2011) Three-dimensional type II ZnO/ZnSe heterostructures and their visible light photocatalytic activities. Langmuir 27:10243–10250

    Article  CAS  Google Scholar 

  122. Cho S et al (2011) Solution-based fabrication of ZnO/ZnSe heterostructure nanowire arrays for solar energy conversion. J Mater Chem 21:17816–17822

    Article  CAS  Google Scholar 

  123. Wang L, Tian G, Chen Y, Xiao Y, Fu H (2016) In situ formation of a ZnO/ZnSe nanonail array as a photoelectrode for enhanced photoelectrochemical water oxidation performance. Nanoscale 8:9366–9375

    Article  CAS  Google Scholar 

  124. Hong T et al (2015) Preparation and enhanced photoelectrochemical performance of selenite-sensitized zinc oxide core/shell composite structure. J Mater Chem A 3:4239–4247

    Article  CAS  Google Scholar 

  125. Ouyang WX, Yu YX, Zhang WD (2015) High and stable photoelectrochemical activity of ZnO/ZnSe/CdSe/CuxS core-shell nanowire arrays: nanoporous surface with CuxS as a hole mediator. Phys Chem Chem Phys 17:14827–14835

    Google Scholar 

  126. Chen Y, Wang L, Wang W, Cao M (2017) Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2-xSe core–shell nanowire arrays fabricated by ion-replacement method. Appl Catal B Environ 209:110–117

    Article  CAS  Google Scholar 

  127. Zeng Y et al (2019) ZnxCd1-xSe nanoparticles decorated ordered mesoporous ZnO inverse opal with binder-free heterojunction interfaces for highly efficient photoelectrochemical water splitting. Appl Catal B Environ 245:469–476

    Article  CAS  Google Scholar 

  128. Li C et al (2020) Enhanced photoelectrochemical performance based on conformal and uniform ZnO/ZnSe/CdSe heterostructures on Zn foil substrate. Int J Hydrogen Energy 45:8257–8272

    Article  CAS  Google Scholar 

  129. Xu H et al (2014) ZnSe/CdS/CdSe triple-sensitized ZnO nanowire arrays for multi-bandgap photoelectrochemical hydrogen generation. RSC Adv 4:47429–47435

    Article  CAS  Google Scholar 

  130. Zhang L et al (2017) Scalable low-band-gap Sb2Se3 thin-film photocathodes for efficient visible-near-infrared solar hydrogen evolution. ACS Nano 11:12753–12763

    Article  CAS  Google Scholar 

  131. Xiong X, Forster M, Major JD, Xu Y, Cowan AJ (2017) Time-resolved spectroscopy of ZnTe photocathodes for solar fuel production. J Phys Chem C 121:22073–22080

    Article  CAS  Google Scholar 

  132. Jang YJ, Lee J, Lee J, Lee JS (2016) Solar hydrogen production from zinc telluride photocathode modified with carbon and molybdenum sulfide. ACS Appl Mater Interfaces 8:7748–7755

    Article  CAS  Google Scholar 

  133. Zhan X et al (2014) Composition-tuned ZnO/ZnxCd1-xTe core/shell nanowires array with broad spectral absorption from UV to NIR for hydrogen generation. ACS Appl Mater Interfaces 6:2878–2883

    Article  CAS  Google Scholar 

  134. Xu F et al (2012) Synthesis of ZnO/CdS hierarchical heterostructure with enhanced photocatalytic efficiency under nature sunlight. CrystEngComm 14:3615–3622

    Article  CAS  Google Scholar 

  135. Kundu P, Deshpande PA, Madras G, Ravishankar N (2011) Nanoscale ZnO/CdS heterostructures with engineered interfaces for high photocatalytic activity under solar radiation. J Mater Chem 21:4209–4216

    Article  CAS  Google Scholar 

  136. Ding M et al (2016) ZnO@CdS core-shell heterostructures: fabrication, enhanced photocatalytic, and photoelectrochemical performance. Nanoscale Res Lett 11:205

    Google Scholar 

  137. Xu S et al (2020) Construction of ZnO/CdS three-dimensional hierarchical photoelectrode for improved photoelectrochemical performance. Renew Energy 153:241–248

    Article  CAS  Google Scholar 

  138. Ma D et al (2017) Highly efficient photocatalyst based on a CdS quantum dots/ZnO nanosheets 0D/2D heterojunction for hydrogen evolution from water splitting. ACS Appl Mater Interfaces 9:25377–25386

    Article  CAS  Google Scholar 

  139. Lin CJ, Kao LC, Huang Y, Bañares MA, Liou SYH (2015) Uniform deposition of coupled CdS and CdSe quantum dots on ZnO nanorod arrays as electrodes for photoelectrochemical solar water splitting. Int J Hydrogen Energy 40:1388–1393

    Article  CAS  Google Scholar 

  140. Zhao H et al (2015) Light-assisted preparation of a ZnO/CdS nanocomposite for enhanced photocatalytic H2 evolution: an insight into importance of in situ generated ZnS. ACS Sustain Chem Eng 3:969–977

    Article  CAS  Google Scholar 

  141. Kim YG, Jo WK (2017) Photodeposited-metal/CdS/ZnO heterostructures for solar photocatalytic hydrogen production under different conditions. Int J Hydrogen Energy 42:11356–11363

    Article  CAS  Google Scholar 

  142. Chen W et al (2018) CdCl2-assisting heat-treatment: enhanced photoelectrocatalytic hydrogen generation and stability of CdS/ZnO nanoheterojunction arrays. Int J Hydrogen Energy 43:9969–9977

    Article  CAS  Google Scholar 

  143. Bak D, Kim JH (2017) Facile fabrication of pseudo-microspherical ZnO/CdS core-shell photocatalysts for solar hydrogen production by water splitting. Ceram Int 43:13493–13499

    Article  CAS  Google Scholar 

  144. Myung Y et al (2010) Composition-tuned ZnO-CdSSe core-shell nanowire arrays. ACS Nano 4:3789–3800

    Article  CAS  Google Scholar 

  145. Chen J et al (2018) Fabricating sandwich-shelled ZnCdS/ZnO/ZnCdS dodecahedral cages with “one stone” as Z-scheme photocatalysts for highly efficient hydrogen production. J. Mater. Chem. A 6:19631–19642

    Article  CAS  Google Scholar 

  146. Wang R et al (2019) ZnO/CdS/PbS nanotube arrays with multi-heterojunctions for efficient visible-light-driven photoelectrochemical hydrogen evolution. Chem Eng J 362:658–666

    Article  CAS  Google Scholar 

  147. Su RR, Yu YX, Xiao YH, Yang XF, Zhang WD (2018) Earth abundant ZnO/CdS/CuSbS2 core-shell nanowire arrays as highly efficient photoanode for hydrogen evolution. Int J Hydrogen Energy 43:6040–6048

    Google Scholar 

  148. Ye YQ et al (2019) 3D cross-linked BiOI decorated ZnO/CdS nanorod arrays: a cost-effective hydrogen evolution photoanode with high photoelectrocatalytic activity. Int J Hydrogen Energy 44:21865–21872

    Article  CAS  Google Scholar 

  149. Liu ZQ et al (2013) Electrochemical synthesis of ZnO/CdTe core-shell nanotube arrays for enhanced photoelectrochemical properties. Electrochim Acta 98:268–273

    Article  CAS  Google Scholar 

  150. Wang L et al (2019) Conductive polymer nanolayer modified one-dimensional ZnO/CdSe photoanode with enhanced photoelectrochemical properties by in-situ ions exchange method. Chem Eng J 368:710–718

    Article  CAS  Google Scholar 

  151. Hou J et al (2016) High performance of Mn-doped CdSe quantum dot sensitized solar cells based on the vertical ZnO nanorod arrays. J Power Sources 325:438–445

    Article  CAS  Google Scholar 

  152. Chen HM et al (2010) Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: true efficiency for water splitting. Angew Chemie 122:6102–6105

    Article  Google Scholar 

  153. Wang X et al (2010) Aligned ZnO/CdTe core−shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties. ACS nano 4:3302–3308

    Google Scholar 

  154. Holi AM et al (2018) Effect of heat treatment on photoelectrochemical performance of hydrothermally synthesised Ag2S/ZnO nanorods arrays. Chem Phys Lett 710:100–107

    Article  CAS  Google Scholar 

  155. Shao YB, Wang LH, Huang JH (2016) ZnS/CuS nanotubes for visible light-driven photocatalytic hydrogen generation. RSC Adv 6:84493–84499

    Article  CAS  Google Scholar 

  156. Yang X et al (2014) Synthesis of porous ZnS:Ag2S nanosheets by ion exchange for photocatalytic H2 generation. ACS Appl Mater Interfaces 6:9078–9084

    Article  CAS  Google Scholar 

  157. Li Y et al (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299

    Article  CAS  Google Scholar 

  158. Paquin F, Rivnay J, Salleo A, Stingelin N, Silva C (2015) Significant enhancement in photocatalytic hydrogen evolution from water by MoS2 nanosheet-coated ZnO heterostructure photocatalyst. Dalt Trans 44:10715–10722

    Google Scholar 

  159. Guo S, Li X, Zhu J, Tong T, Wei B (2016) Au NPs@MoS2 sub-micrometer sphere-ZnO nanorod hybrid structures for efficient photocatalytic hydrogen evolution with excellent stability. Small 12:5692–5701

    Article  CAS  Google Scholar 

  160. Lamouchi A, Assaker IB, Chtourou R (2019) Enhanced photoelectrochemical activity of MoS 2 -decorated ZnO nanowires electrodeposited onto stainless steel mesh for hydrogen production. Appl Surf Sci 478:937–945

    Google Scholar 

  161. Kumar S et al (2019) Defect-rich MoS2 ultrathin nanosheets-coated nitrogen-doped ZnO nanorod heterostructures: an insight into in-situ-generated ZnS for enhanced photocatalytic hydrogen evolution. ACS Appl Energy Mater 2:5622–5634

    Article  CAS  Google Scholar 

  162. Sharma MD, Mahala C, Basu M (2020) Sensitization of vertically grown ZnO 2D thin sheets by MoSx for efficient charge separation process towards photoelectrochemical water splitting reaction. Int J Hydrogen Energy 45:12272–12282

    Article  CAS  Google Scholar 

  163. Kumar S et al (2017) Efficient electron transfer across a ZnO–MoS2–reduced graphene oxide heterojunction for enhanced sunlight-driven photocatalytic hydrogen evolution. Chemsuschem 10:3588–3603

    Article  CAS  Google Scholar 

  164. Li X, Li J, Cui C, Liu Z, Niu Y (2016) PbS nanoparticle sensitized ZnO nanowire arrays to enhance photocurrent for water splitting. J Phys Chem C 120:4183–4188

    Article  CAS  Google Scholar 

  165. Kumar D, Bai R, Chaudhary S, Pandya DK (2017) Enhanced photoelectrochemical response for hydrogen generation in self-assembled aligned ZnO/PbS core/shell nanorod arrays grown by chemical bath deposition. Mater Today Energy 6:105–114

    Article  CAS  Google Scholar 

  166. Guo K, Chen X, Han J, Liu Z (2014) Synthesis of ZnO/Cu2S core/shell nanorods and their enhanced photoelectric performance. J Sol-Gel Sci Technol 72:92–99

    Article  CAS  Google Scholar 

  167. Kumar S et al (2016) Fabrication of TiO2/CdS/Ag2S Nano-heterostructured photoanode for enhancing photoelectrochemical and photocatalytic activity under visible light. ChemistrySelect 1:4891–4900

    Article  CAS  Google Scholar 

  168. Chen C et al (2016) Enhanced visible light photocatalytic performance of ZnO nanowires integrated with CdS and Ag2S. Dalt. Trans. 45:3750–3758

    Article  CAS  Google Scholar 

  169. Carrasco-Jaim OA, Ceballos-Sanchez O, Torres-Martínez LM, Moctezuma E, Gómez-Solís C (2017) Synthesis and characterization of PbS/ZnO thin film for photocatalytic hydrogen production. J Photochem Photobiol A Chem 347:98–104

    Article  CAS  Google Scholar 

  170. Yendrapati TP, Gautam A, Bojja S, Pal U (2020) Formation of ZnO@CuS nanorods for efficient photocatalytic hydrogen generation. Sol Energy 196:540–548

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Isaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Isaev, A.B., Shabanov, N.S., Sobola, D., Kaviyarasu, K., Ismailov, A.M., Omarov, G.M. (2022). ZnO/Chalcogenides Semiconductor Heterostructures for Photoelectrochemical Water Splitting. In: Kasinathan, K., Elshikh, M.S., Al Farraj, D.AA. (eds) Nanomaterials for Energy Conversion, Biomedical and Environmental Applications. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-2639-6_1

Download citation

Publish with us

Policies and ethics