Skip to main content
Log in

Electrotransport Characteristics of Polyaniline-Modified Cations-Exchange Membranes in Solutions of Sulfuric Acid and Nickel and Chromium Sulfates

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrotransport properties and the structure of polyaniline-modified sulfocationic membranes MK-40 and MF-4SK are studied in solutions of sulfuric acid and sulfates of nickel and chromium. The modification by polyaniline is performed in elelectrodialyzer. The decrease in conductivity and diffusion permeability of membranes after their modification with polyaniline is assessed in electrolyte solutions of different nature. The key effect of the counter-ion charge on the conductivity of original and modified membranes is confirmed. The unusual effect of the decrease in the MF-4SK/PANI membrane conductivity with an increase in the concentration of solutions containing multiply-charged cations is observed. The information acquired by porosimetry on the effect of multiply-charged ions on the structure of homogeneous and heterogeneous membranes is supplemented by calculations of the transport and structure parameters using the microheterogeneous model of ion-exchange membrane. Based on the analysis of parameters of current–voltage curves in solutions of nickel sulfate and sulfuric acid, the prospects of using the modified membranes in the electrodialysis of solutions containing sulfuric acid and multiply-charged ions are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Shaposhnik, V.A. and Kesore, K., An early history of electrodialysis with permselective membranes, J. Membr. Sci., 1997, vol. 136, issue 1–2, p. 35.

    Article  CAS  Google Scholar 

  2. Xu, T., Ion exchange membranes: State of their development and perspective, J. Membr. Sci., 2005, vol. 263, p. 1.

    Article  CAS  Google Scholar 

  3. Campione, L., Gurreri, M., Ciofalo, G., Micale, A., Tamburini, A., and Cipollina, A., Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications, Desalination, 2018, vol. 434, p. 121.

    Article  CAS  Google Scholar 

  4. Ghyselbrecht, K., Silva, A., Van der Bruggen, B., Boussu, K, Meesschaert, B., and Pinoy, L., Desalination feasibility study of an industrial NaCl stream by bipolar membrane electrodialysis, J. Environ. Manage., 2014, vol. 140, p. 69.

    Article  CAS  PubMed  Google Scholar 

  5. Buzzi, D.C., Viegas, L.S., Rodrigues, M.A.S., Bernardes, A.M., and Tenório, J.A.S., Water recovery from acid mine drainage by electrodialysis, Miner. Eng., 2013, vol. 40, p. 82.

    Article  CAS  Google Scholar 

  6. Martí-Calatayud, M.C., Buzzi, D.C., García-Gabaldón, M., Ortega, E., Bernardes, A.M., Tenório, J.A.S., and Pérez-Herranz, V., Sulfuric acid recovery from acid mine drainage by means of electrodialysis, Desalination, 2014, vol. 343, p. 120.

    Article  Google Scholar 

  7. Kattan Readi, O.M., Gironès, M., and Nijmeijer, K., Separation of complex mixtures of amino acids for biorefinery applications using electrodialysis, J. Membr. Sci., 2013, vol. 429, p. 338.

    Article  CAS  Google Scholar 

  8. Huang, C., Xu, T., Zhang, Y., Xue, Y., and Chen, G., Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments, J. Membr. Sci., 2007, vol. 288, p. 1.

    Article  CAS  Google Scholar 

  9. Al-Saydeh, S.A., El-Naas, M.H., and Zaidi, S.J., Copper removal from industrial wastewater: A comprehensive review, J. Ind. Eng. Chem., 2017, vol. 56, p. 35.

    Article  CAS  Google Scholar 

  10. Rana, D., Matsuura, T., Kassim, M.A., and Ismail, A.F., Radioactive decontamination of water by membrane processes—A review, Desalination, 2013, vol. 321, p. 77.

    Article  CAS  Google Scholar 

  11. Rotta, E.H., Bitencourt, C.S., Marder, L., and Bernardes, A.M., Phosphorus recovery from low phosphate-containing solution by electrodialysis, J. Membr. Sci., 2019, vol. 573, p. 293.

    Article  CAS  Google Scholar 

  12. Belkada, F.D., Kitous, O., Drouiche, N., Aoudj, S., Bouchelaghem, O., Abdi, N., Grib, H., and Mameri, N., Electrodialysis for fluoride and nitrate removal from synthesized photovoltaic industry wastewater, Sep. Purif. Technol., 2018, vol. 204, p. 108.

    Article  Google Scholar 

  13. Yaroslavtsev, A.B. and Nikonenko, V.V., Ion-exchange membrane materials: Properties, modification, and practical application, Nanotechnol. Russ., 2009, vol. 4, p. 137. https://doi.org/10.1134/S199507800903001X

    Article  Google Scholar 

  14. Yaroslavtsev, A.B., Perfluorinated ion-exchange membranes, Polym. Sci., Ser. A, 2013, vol. 55, p. 674. https://doi.org/10.1134/S0965545X13110060

    Article  CAS  Google Scholar 

  15. Nagarale, R.K., Gohil, G.S., and Shahi, V. K., Recent developments on ion-exchange membranes and electro-membrane processes, Adv. Colloid Interface Sci., 2006, vol. 119, p. 97.

    Article  CAS  PubMed  Google Scholar 

  16. Thakur, A.K. and Malmali, M., Advances in polymeric cation exchange membranes for electrodialysis: An overview, J. Environ. Chem. Eng., 2022, vol. 10, issue 5, p. 108295.

    Article  CAS  Google Scholar 

  17. Yurova, P.A., Stenina, I.A., and Yaroslavtsev, A.B., The effect of the cation-exchange membranes MK-40 modification by perfluorinated sulfopolymer and ceria on their transport properties, Russ. J. Electrochem., 2020, vol. 56, p. 528.

    Article  CAS  Google Scholar 

  18. Shalimov, A.S., Perepelkina, A.I., Stenina, I.A., Rebrov, A.I., and Yaroslavtsev, A.B., Ion transport in MF-4SK membranes modified with hydrous zirconium hydrogen phosphate, Russ. J. Inorg. Chem., 2009, vol. 54, p. 356.

    Article  Google Scholar 

  19. Sata, T., Studies on anion exchange membranes having permselectivity for specific anions in electrodialysis—effect of hydrophilicity of anion exchange membranes on permselectivity of anions, J. Membr. Sci., 2000, vol. 167, p. 1.

    Article  CAS  Google Scholar 

  20. Sata, T., Sata, T., and Yang, W., Studies on cation-exchange membranes having permselectivity between cations in electrodialysis, J. Membr. Sci., 2002, vol. 206, p. 31.

    Article  CAS  Google Scholar 

  21. Vaselbehagh, M., Karkhanechi, H., Takagi, R., and Matsuyama, H., Surface modification of an anion exchange membrane to improve the selectivity for monovalent anions in electrodialysis—experimental verification of theoretical predictions, J. Membr. Sci., 2015, vol. 490, p. 301.

    Article  CAS  Google Scholar 

  22. Blythe, T. and Bloor, D., Electrical Properties of Polymers, Second Ed., Cambridge: Cambridge Univ., 2005.

    Google Scholar 

  23. Berezina, N.P., Kononenko, N.A., Sytcheva, A.A.-R., Loza, N.V., Shkirskaya, S.A., Hegman, N., and Pungor, A., Perfluorinated nanocomposite membranes modified by polyaniline: electrotransport phenomena and morphology, Electrochim. Acta, 2009, vol. 54, p. 2342.

    Article  CAS  Google Scholar 

  24. Tan, S. and Belanger, D., Characterization and transport properties of Nafion/polyaniline composite membranes, J. Phys. Chem., B, 2005, vol. 109, p. 23480.

    Article  CAS  PubMed  Google Scholar 

  25. Berezina, N.P., Kononenko, N.A., Shkirskaya, S.A., Falina, I.V., Filippov, A.N., and Sycheva, A.A.-R., Electrotransport properties and morphology of MF‑4SK membranes after surface modification with polyaniline, Russ. J. Electrochem., 2010, vol. 46, p. 485.

    Article  CAS  Google Scholar 

  26. Sata, T., Ishii, Y., Kawamura, K., and Matsusaki, K., Composite membranes prepared from cation exchange membranes and polyaniline and their transport properties in electrodialysis, J. Electrochem. Soc., 1999, vol. 146, p. 585.

    Article  CAS  Google Scholar 

  27. Farrokhzad, H., Darvishmanesh, S., Genduso, G., Van Gerven, T., and Van der Bruggen, B., Development of bivalent cation selective ion exchange membranes by varying molecular weight of polyaniline, Electrochim. Acta, 2015, vol. 158, p. 64.

    Article  CAS  Google Scholar 

  28. Kumar, M., Khan, M.A., Alothman, Z.A., and Siddiqui, M.R., Polyaniline modified organic–inorganic hybrid cation-exchange membranes for the separation of monovalent and multivalent ions, Desalination, 2013, vol. 325, p. 95.

    Article  CAS  Google Scholar 

  29. Nagarale, R.K., Gohil, G.S., Shahi, Vinod, K., Trivedi, G.S., and Rangarajan, R., Preparation and electrochemical characterization of cation- and anion-exchange/polyaniline composite membranes, J. Colloid Interface Sci., 2004, vol. 277, p. 162.

    Article  CAS  PubMed  Google Scholar 

  30. Chamoulaud, G. and Belanger, D., Modification of ion-exchange membrane used for separation of protons and metallic cations and characterization of the membrane by current–voltage curves, J. Colloid Interface Sci., 2005, vol. 281, p. 179.

    Article  CAS  PubMed  Google Scholar 

  31. Amado, F.D.R., Rodrigues, M.A.S., Morisso, F.D.P., Bernardes, A.M., Ferreira, J.Z., and Ferreira, C.A., High-impact polystyrene/polyaniline membranes for acid solution treatment by electrodialysis: Preparation, evaluation, and chemical calculation, J. Colloid Interface Sci., 2008, vol. 320, issue 1, p. 52.

    Article  CAS  PubMed  Google Scholar 

  32. Farrokhzad, H., Moghbeli, M.R., Van Gerven, T., and Van der Bruggen, B., Surface modification of composite ion exchange membranes by polyaniline, React. Funct. Polym., 2015, vol. 86, p. 161.

    Article  CAS  Google Scholar 

  33. Berezina, N.P., Kononenko, N.A., Dyomina, O.A., and Gnusin, N.P., Characterization of ion-exchange membrane materials: Properties vs structure, Adv. Colloid Interface Sci., 2008, vol. 139, p. 3.

    Article  CAS  PubMed  Google Scholar 

  34. Andreeva, M., Loza, N., Kutenko, N., and Kononenko, N., Polymerization of aniline in perfluorinated membranes under conditions of electrodiffusion of monomer and oxidizer, J. Solid State Electrochem., 2020, vol. 24, no. 1, p. 101. https://doi.org/10.1007/s10008-019-04463-7

  35. Volfkovich, Yu.M., Bagotzky, V.S., Sosenkin, V.E., and Blinov, I.A., The standard contact porosimetry, Colloids Surf., 2001, vol. 187 188, p. 349.

    Article  Google Scholar 

  36. Spravochnik po elektrokhimii (Handbook on Electrochemistry), Sukhotin, A.M., Ed., Leningrad: Kchimiya, 1981.

    Google Scholar 

  37. Kononenko, N.A., Loza, N.V., Andreeva, M.A., Shkirskaya, S.A., and Dammak, L., Influence of electric field during the chemical synthesis of polyaniline on the surface of heterogeneous sulfonated cation-exchange membranes on their structure and properties, Membr. Membr. Technol., 2019, vol. 1, no. 4, p. 229. https://doi.org/10.1134/S2517751619040036

    Article  CAS  Google Scholar 

  38. Filippov, A.N., Kononenko, N.A., and Demina, O.A., Diffusion of electrolytes of different natures through the cation-exchange membrane, Colloid J., 2017, vol. 79, no. 4, p. 556. https://doi.org/10.1134/S1061933X17040044

    Article  CAS  Google Scholar 

  39. Zabolotsky, V.I. and Nikonenko, V.V., Effect of structural membrane inhomogeneity on transport properties, J. Membr. Sci., 1993, vol. 79, p. 181.

    Article  CAS  Google Scholar 

  40. Falina, I., Loza, N., Loza, S., Titskaya, E., and Romanyuk, N., Permselectivity of cation exchange membranes modified by polyaniline, Membranes, 2021, vol. 11, p. 227. https://doi.org/10.3390/membranes11030227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kononenko, N.A., Fomenko, M.A., and Volfko-vich, Yu.M., Structure of perfluorinated membranes investigated by method of standard contact porosimetry, Adv. Colloid Interface Sci., 2015, vol. 222, p. 425.

    Article  CAS  PubMed  Google Scholar 

  42. Nikonenko, V.V., Mareev, S.A., Pis’menskaya, N.D., Uzdenova, A.M., Kovalenko, A.V., Urtenov, M.K., and Pourcelly, G., Effect of electroconvection and its use in intensifying the mass transfer in electrodialysis (Review), Russ. J. Electrochem., 2017, vol. 53, p. 1122. https://doi.org/10.1134/S1023193517090099

    Article  CAS  Google Scholar 

  43. Ibanez, R., Stamatialis, D.F., and Wessling, M., Role of membrane surface in concentration polarization at cation exchange membranes, J. Membr. Sci., 2004, vol. 239, p. 119.

    Article  CAS  Google Scholar 

  44. Pismenskaya, N.D., Nikonenko, V.V., Melnik, N.A., Shevtsova, K.A., Belova, E.I., Pourcelly, G., Cot, D., Dammak, L., and Larchet, C., Evolution with time of hydrophobicity and microrelief of a cation-exchange membrane surface and its impact on overlimiting mass transfer, J. Phys. Chem. B., 2012, vol. 116, issue 7, p. 2145.

    Article  CAS  PubMed  Google Scholar 

  45. Pis’menskaya, N.D., Nikonenko, V.V., Mel’nik, N.A., Pourcelli, G., and Larchet, C., Effect of the ion-exchange-membrane/solution interfacial characteristics on the mass transfer at severe current regimes, Russ. J. Electrochem., 2012, vol. 48, p. 610.

    Article  Google Scholar 

  46. Titorova, V.D., Moroz, I.A., Mareev, S.A., Pismenskaya, N.D., Sabbatovskii, K.G., Wang,Y., Xu, T., and Nikonenko, V.V., How bulk and surface properties of sulfonated cation-exchange membranes response to their exposure to electric current during electrodialysis of a Ca2+ containing solution, J. Membr. Sci., 2022, vol. 644, p. 120149.

    Article  CAS  Google Scholar 

  47. Loza, S.A., Zabolotsky, V.I., Loza, N.V., and Fomenko, M.A., Structure, morphology, and transport characteristics of profiled bilayer membranes, Pet. Chem., 2016, vol. 56, issue 11, p. 1027.

    Article  CAS  Google Scholar 

  48. Pismenskaya, N.D., Mareev, S.A., Pokhidnya, E.V., Larchet, C., Dammak, L., and Nikonenko, V.V., Effect of surface modification of heterogeneous anion-exchange membranes on the intensity of electroconvection at their surfaces, Russ. J. Electrochem., 2019, vol. 55, no. 12, p. 1203.

    Article  CAS  Google Scholar 

  49. Rubinstein, I., Zaltzman, B., and Pundik, T., Ion-exchange funneling in thin-film coating modification of heterogeneous electrodialysis membranes, Phys. Rev. E., 2002, vol. 65, p. 1.

    Article  Google Scholar 

  50. Falina, I.V., Kononenko, N.A., Demina, O.A., Titskaya, E.V., and Loza, S.A., Estimation of ion-exchange equilibrium constant using membrane conductivity data, Colloid J., 2021, vol. 83, no. 3, p. 379.

    Article  CAS  Google Scholar 

  51. Ponomar, M., Krasnyuk, E., Butylskii, D., Nikonenko, V., Wang, Y., Jiang, C., Xu, T., and Pismenskaya, N., Sessile drop method: critical analysis and optimization for measuring the contact angle of an ion-exchange membrane surface, Membranes, 2022, vol. 12, no. 8, p. 765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jamadade, V.S., Dhawale, D.S., and Lokhande, C.D., Studies on electrosynthesized leucoemeraldine, emeraldine and pernigraniline forms of polyaniline films and their supercapacitive behavior, Synth. Metals, 2010, vol. 160, nos. 9–10, p. 955.

    Article  CAS  Google Scholar 

  53. Kononenko, N.A., Dolgopolov, S.V., Berezina, N.P., Loza, N.V., and Lakeev, S.G., Asymmetry of voltammetric characteristics of perfluorinated MF-4SK membranes with polyaniline-modified surface, Russ. J. Electrochem., 2012, vol. 48, p. 857.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (project FZEN-0022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Falina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by T. Safonova

Delivered at the 20th All-Russian Meeting “Electrochemistry of Organic Compounds” (EKhOS-2022), Novocherkassk, October 18–22, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falina, I.V., Loza, N.V., Kononenko, N.A. et al. Electrotransport Characteristics of Polyaniline-Modified Cations-Exchange Membranes in Solutions of Sulfuric Acid and Nickel and Chromium Sulfates. Russ J Electrochem 59, 752–763 (2023). https://doi.org/10.1134/S102319352310004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319352310004X

Keywords:

Navigation