Skip to main content
Log in

Investigation on Electrochemical and Physical Properties of NanoCrN/TiN Multilayer Coating on AISI 304 Stainless Steel as Bipolar Plate for PEMFCs

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Nano Cr–N/Ti–N multilayers coating is deposited on the SS304 surface by cathodic arc-PVD to enhance electrical conductivity and corrosion resistance of SS304 applied as a bipolar plate in PEMFCs. Afterward, the thickness, composition, corrosion rate, interfacial contact resistance and hydrophobicity of the samples are identified. According to the findings, the nano Cr–N/Ti–N multilayer can considerably increase the corrosion resistance due to the enhanced numbers of interfaces and preparing dense coating. The corrosion current density of the coating in the experimentally prepared cathodic solution of the fuel cell is 0.187 μA cm–2, which satisfies targets set by the DOE 2025 (i.e., <1 μA cm−2). The total porosity of coating is 0.0033% which illustrates the very dense nano multilayer PVD deposition. Moreover, the contact angle results indicate that Cr–N/Ti–N can enhance the hydrophobicity of electrode surface. The ICR measurements between the carbon paper and Cr–N/Ti–N coating before and after polarization shows very low value, which is in accordance with the U.S. DOE requirement (≤10 mΩ cm2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Rodygin, A.I., Melnikov, A.P., Ivashkin, K.G., Sivak, A.V., Kashin, A.M., and Ivanov, D.A., Low-temperature operation features of proton-exchange membrane fuel cells with an active air cooling, Russ. J. Electrochem., 2021, vol. 57, p. 985.

    Article  CAS  Google Scholar 

  2. Danaee, I., Jafarian, M., Shahnazi Sangachin, A.A., and Gobal, F., A comparative study of the electrooxidation of ethylene glycol on transition metal electrodes in alkaline solution, J. New Mater. Electrochem. Syst., 2012, vol. 15, p. 255.

    Article  CAS  Google Scholar 

  3. Ponomarev, I.I., Skupov, K.M., Ponomarev, Iv.I., Razorenov, D.Yu., Volkova, Yu.A., Basu, V.G., Zhigalina, O.M., Bukalov, S.S., Volfkovich, Yu.M., and Sosenkin, V.E., New gas-diffusion electrode based on heterocyclic microporous polymer PIM-1 for high-temperature polymer electrolyte membrane fuel cell, Russ. J. Electrochem., 2019, vol. 55, p. 552.

    Article  CAS  Google Scholar 

  4. Kovalev, N.V., Karpenko, T.V., Sheldeshov, N.V., and Zabolotsky, V.I., Electrochemical characteristics of modified heterogeneous bipolar membrane and electromembrane process of nitric acid and sodium hydroxide recuperation from sodium nitrate and boric acid solution, Russ. J. Electrochem., 2021, vol. 57, p. 122.

    Article  CAS  Google Scholar 

  5. Ito, H., Miyazaki, N., Sugiyama, S., Ishida, M., Nakamura, Y., Iwasaki, S., Hasegawa, Y., and Nakano, A., Investigations on electrode configurations for anion exchange membrane electrolysis, J. Appl. Electrochem., 2018, vol. 48, p. 305.

    Article  CAS  Google Scholar 

  6. St-Pierre, J.V. and Virji, M.B., Cell performance distribution in a low-temperature proton, Appl. Electrochem., 2016, vol. 46, p. 169.

    Article  CAS  Google Scholar 

  7. Cooper, L. and El-Kharouf, A., Titanium nitride polyaniline bilayer coating for metallic bipolar plates used in polymer electrolyte fuel cells, Fuel Cells, 2020, vol. 20, p. 453.

    Article  CAS  Google Scholar 

  8. Banerjee, S., Pattnayek, S., Kumar, R., and Kar, K.K., Impact of graphite on thermomechanical, mechanical, thermal, electrical properties, and thermal conductivity of HDPE/copper composites, Fuel Cells, 2020, vol. 20, p. 116.

    Article  CAS  Google Scholar 

  9. Gao, P., Xie, Z., Chun, O., Tao, T., Wu, X., and Huang, Q., Electrochemical characteristics and interfacial contact resistance of Ni-P/TiN/PTFE coatings on Ti bipolar plates, J. Solid State Electrochem., 2018, vol. 22, p. 1971.

    Article  CAS  Google Scholar 

  10. Jin, J., He, Z., and Zhao, X., Effect of Al content on the corrosion resistance and conductivity of metal nitride coating in the cathode environment of PEMFCs, Mater. Chem. Phys., 2020, vol. 245, p. 122739.

    Article  CAS  Google Scholar 

  11. Jin, J., Zheng, D., Han, S., Ma, J., and Zhu, Z., Effect of Ni content on the electrical and corrosion properties of CrNiN coating in simulated proton exchange membrane fuel cell, Int. J. Hydrogen Energy, 2017, vol. 42, p. 1142.

    Article  CAS  Google Scholar 

  12. Jin, J., Zhu, Z., and Zheng, D., Influence of Ti content on the corrosion properties and contact resistance of CrTiN coating in simulated proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 2017, vol. 42, p. 11758.

    Article  CAS  Google Scholar 

  13. Yi, P., Zhu, L., Dong, C., and Xiao, K., Corrosion and interfacial contact resistance of 316L stainless steel coated with magnetron sputtered ZrN and TiN in the simulated cathodic environment of a proton-exchange membrane fuel cell, Surf. Coat. Technol., 2019, vol. 363, p. 198.

    Article  CAS  Google Scholar 

  14. Wang, Y. and Northwood, D.O., Effect of substrate material on the corrosion of TiN-coated stainless steels in simulated anode and cathode environments of proton exchange membrane fuel cells, J. Power Sources, 2009, vol. 191, p. 483.

    Article  CAS  Google Scholar 

  15. Silva, F.C., Prada Ramirez, O.M., Tunes, M.A., Edmondson, P.D., Sagás, J.C., Fontana, L.C., de Melo, H.G., and Schön, C.G., Corrosion resistance of functionally graded TiN/Ti coatings for proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 2020, vol. 45, p. 33993.

    Article  CAS  Google Scholar 

  16. Jannat, S., Rashtchi, H., Atapour, M., Golozar, M.A., Elmkhah, H., and Zhiani, M., Preparation and performance of nanometric Ti/TiN multi-layer physical vapor deposited coating on 316L stainless steel as bipolar plate for proton exchange membrane fuel cells, J. Power Sources, 2019, vol. 435, p. 226818.

    Article  CAS  Google Scholar 

  17. Omrani, M., Habibi, M., Amrollahi, R., and Khosravi, A., Improvement of corrosion and electrical conductivity of 316L stainless steel as bipolar plate by TiN nanoparticle implantation using plasma focus, Int. J. Hydrogen Energy, 2012, vol. 37, p. 14676.

    Article  CAS  Google Scholar 

  18. Ghorbani, M.M., Taherian, R., and Bozorg, M., Investigation on physical and electrochemical properties of TiN-coated Monel alloy used for bipolar plates of proton exchange membrane fuel cell, Mater. Chem. Phys., 2019, vol. 238, p. 121916.

    Article  CAS  Google Scholar 

  19. Barbosa, M.G.C., Viana, B.C., Santos, F.E.P., Fernandes, F., Feitor, M.C., Costa, T.H.C., Naeem, M., and Sousa, R.R.M., Surface modification of tool steel by cathodic cage TiN deposition, Surf. Eng., 2019, vol. 132, p. 1.

    Google Scholar 

  20. Tian, R., Chromium nitride/Cr coated 316L stainless steel as bipolar plate for proton exchange membrane fuel cell, J. Power Sources, 2011, vol. 196, p. 1258.

    Article  CAS  Google Scholar 

  21. Olia, H., Ghobadi, M., Danaee, I., and Onsori, S., Effect of number of layers on erosion, corrosion, and wear resistance of multilayer Cr–N/Cr–Al–N coatings on AISI 630 stainless steel, Mater. Corros., 2020, vol. 71, p. 1361.

    Article  CAS  Google Scholar 

  22. Danaee, I., Nikparsa, P., Khosravi-Nikou, M.R., Eskandari, H., and Nikmanesh, S., Density functional theory and electrochemical noise analysis of corrosion inhibition behavior of N,N'-bis(1-(3,5-dihydroxyphenyl)ethylidene)propane-1,3-diamine on steel in HCl solution, Prot. Met. Phys. Chem. Surf., 2019, vol. 55, p. 1000.

    Article  Google Scholar 

  23. Danaee, I., Ramesh Kumar, S., Rashvand Avei, M., and Vijayan, M., Electrochemical and quantum chemical studies on corrosion inhibition performance of 2,2'-(2-hydroxyethylimino)bis[N-(alphaalpha-dimethylphenethyl)-N-methylacetamide] on mild steel corrosion in 1 M HCl solution, Mater. Res., 2020, vol. 23, p. e20180610.

    Article  CAS  Google Scholar 

  24. Hassanzadeh, S., Danaee, I., Saebnoori, E., Chocholatý, O., Křiž, A., and Eskandari, H., Investigation of the effect of pH on stress corrosion cracking of API 5L X65 steel by impedance spectroscopy and slow strain rate tensile test, J. Mater. Eng. Perform., 2021, vol. 30, p. 5633.

    Article  CAS  Google Scholar 

  25. Fu, Y., Lin, G., Hou, M., Wu, B., Li, H., Hao, L., Shao, Z., and Yi, B., Optimized Cr–nitride film on 316L stainless steel as proton exchange membrane fuel cell bipolar plate, Int. J. Hydrogen Energy, 2009, vol. 34, p. 453.

    Article  CAS  Google Scholar 

  26. Wang, L., Sun, J., Li, P., Li, S., Jing, B., Wen, Z., and Ji, S., Niobized AISI 304 stainless steel bipolar plate for proton exchange membrane fuel cell, J. Power Sources, 2012, vol. 208, p. 397.

    Article  CAS  Google Scholar 

  27. Xu, J., Li, Z., Xu, S., Munroe, P., and Xie, Z.H., A nanocrystalline zirconium carbide coating as a functional corrosion-resistant barrier for polymer electrolyte membrane fuel cell application, J. Power Sources, 2015, vol. 297, p. 359.

    Article  CAS  Google Scholar 

  28. Bhosale, A.C. and Rengaswamy, R., Interfacial contact resistance in polymer electrolyte membrane fuel cells: recent developments and challenges, Renew. Sust. Energy Rev., 2019, vol. 115, p. 109351.

    Article  CAS  Google Scholar 

  29. Nam, N.D., Han, J.H., Kim, J.G., Tai, P.H., and Yoon, D.H., Electrochemical properties of TiNCrN-coated bipolar plates in polymer electrolyte membrane fuel cell environment, Thin Solid Films, 2010, vol. 518, p. 6598.

    Article  CAS  Google Scholar 

  30. Nam, N.D., Jo, D.S., Kim, J.G., and Yoon, D.H., Corrosion protection of CrN/TiN multi-coating for bipolar plate of polymer electrolyte membrane fuel cell, Thin Solid Films, 2011, vol. 519, p. 6787.

    Article  CAS  Google Scholar 

  31. Lee, S.H., Kakati, N., Maiti, J., Jee, S.H., Kalita, D.J., and Yoon, Y.S., Corrosion and electrical properties of CrN- and TiN-coated 316L stainless steel used as bipolar plates for polymer electrolyte membrane fuel cells, Thin Solid Films, 2013, vol. 529, p. 374.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Danaee.

Ethics declarations

Authors announce that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif Jannat, Bahrami, A., Elmkhah, H. et al. Investigation on Electrochemical and Physical Properties of NanoCrN/TiN Multilayer Coating on AISI 304 Stainless Steel as Bipolar Plate for PEMFCs. Russ J Electrochem 59, 697–706 (2023). https://doi.org/10.1134/S1023193523090069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523090069

Keywords:

Navigation