Skip to main content
Log in

Analysis of Effect of Concentration Dependence of Exchange Current on Metal Electrodeposition into Template Nanopores

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The metal electrodeposition into the nanopores of template of porous anodic alumina type under the conditions of mixed kinetics of metal deposition is studied theoretically using analytical and numerical methods. Two main periods of the process are studied: the non-steady-state formation of diffusion layer in the template pores and much longer process of pore filling with the metal. The effect of nonlinearity of the concentration dependence of the exchange current density of metal electrodeposition on the variation of the current density with the time during the diffusion layer formation and pore filling with the metal is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Whitney, T.M., Jiang, J.S., Searson, P.C., and Chien, C.L., Fabrication and magnetic properties of arrays of metallic nanowires, Science, 1993, vol. 261, p. 1316.

    Article  CAS  PubMed  Google Scholar 

  2. Banerjee, S., Dan, A., and Chakravorty, D., Review synthesis of conducting nanowires, J. Mater. Sci., 2002, vol. 37, p. 4261.

    Article  CAS  Google Scholar 

  3. Li, Y., Qian, F., Xiang, J., and Lieber, C.M., Nanowire electronic and optoelectronic devices, Mater. Today, 2006, vol. 9, p. 18.

    Article  CAS  Google Scholar 

  4. Davydov, A.D. and Volgin, V.M., Template electrodeposition of metals. Review, Russ. J. Electrochem., 2016, vol. 52, p. 806.

    Article  CAS  Google Scholar 

  5. Possin, G.E., A method for forming very small diameter wires, Rev. Sci. Instrum., 1970, vol. 41, p. 772.

    Article  CAS  Google Scholar 

  6. Lee, W. and Park, S.-J., Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures, Chem. Rev., 2014, vol. 114, p. 7487.

    Article  CAS  PubMed  Google Scholar 

  7. Proenca, M.P., Sousa, C.T., Ventura, J., Vazquez, M., and Araujo, J.P., Ni growth inside ordered arrays of alumina nanopores: enhancing the deposition rate, Electrochim. Acta, 2012, vol. 72, p. 215.

    Article  CAS  Google Scholar 

  8. Napolskii, K.S., Roslyakov, I.V., Eliseev, A.A., Petukhov, D.I., Lukashin, A.V., Chen, S.-F., Liu, C.-P., and Tsirlina, G.A., Tuning the microstructure and functional properties of metal nanowire arrays via deposition potential, Electrochim. Acta, 2011, vol. 56, p. 2378.

    Article  CAS  Google Scholar 

  9. Schwanbeck, H. and Schmidt, U., Preparation and characterization of magnetic nanostructures using filtration membranes, Electrochim. Acta, 2000, vol. 45, p. 4389.

    Article  CAS  Google Scholar 

  10. Fedorov, F.S., Dunne, P., Gebert, A., and Uhlemann, M., Influence of Cu2+ ion concentration on the uniform electrochemical growth of copper nanowires in ordered alumina template, J. Electrochem. Soc., 2015, vol. 162, p. D568.

    Article  CAS  Google Scholar 

  11. Shin, S., Kong, B.H., Kim, B.S., Kim, K.M., Cho, H.K., and Cho, H.H., Over 95% of large-scale length uniformity in template-assisted electrodeposited nanowires by subzero-temperature electrodeposition, Nanoscale Res. Lett., 2011, vol. 6, p. 467.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Valizadeh, S., George, J.M., Leisner, P., and Hultman, L., Electrochemical deposition of Co nanowire arrays: quantitative consideration of concentration profiles, Electrochim. Acta, 2001, vol. 47, p. 865.

    Article  CAS  Google Scholar 

  13. Schuchert, I.U., Toimil Molares, M.E., Dobrev, D., Vetter, J., Neumann, R., and Martin, M., Electrochemical copper deposition in etched ion track membranes. Experimental results and a qualitative kinetic model, J. Electrochem. Soc., 2003, vol. 150, p. C189.

    Article  CAS  Google Scholar 

  14. Philippe, L., Kacem, N., and Michler, J., Electrochemical deposition of metals inside high aspect ratio nanoelectrode array: analytical current expression and multidimensional kinetic model for cobalt nanostructure synthesis, J. Phys. Chem. C, 2007, vol. 111, p. 5229.

    Article  CAS  Google Scholar 

  15. Lopes, M.C., de Oliveira, C.P., and Pereira, E.C., Computational modeling of the template-assisted deposition of nanowires, Electrochim. Acta, 2008, vol. 53, p. 4359.

    Article  CAS  Google Scholar 

  16. Bograchev, D.A., Volgin, V.M., and Davydov, A.D., Simple model of mass transfer in template synthesis of metal ordered nanowire arrays, Electrochim. Acta, 2013, vol. 96, p. 1.

    Article  CAS  Google Scholar 

  17. Bograchev, D.A., Volgin, V.M., and Davydov, A.D., Simulation of inhomogeneous pores filling in template electrodeposition of ordered metal nanowire arrays, Electrochim. Acta, 2013, vol. 112, p. 279.

    Article  CAS  Google Scholar 

  18. Bograchev, D.A., Volgin, V.M., and Davydov, A.D., Modeling of metal electrodeposition in the pores of anodic aluminum oxide, Russ. J. Electrochem., 2015, vol. 51, p. 799.

    Article  CAS  Google Scholar 

  19. Bograchev, D.A. and Davydov, A.D., Effect of applied temperature gradient on instability of template-assisted metal electrodeposition, Electrochim. Acta, 2019, vol. 296, p. 1049.

    Article  CAS  Google Scholar 

  20. Shin, S., Al-Housseiny, T.T., Kim, B.S., Cho, H.H., and Stone, H.A., The race of nanowires: morphological instabilities and a control strategy, Nano Lett., 2014, vol. 14, p. 4395.

    Article  CAS  PubMed  Google Scholar 

  21. Konishi, Y., Motoyama, M., Matsushima, H., Fukunaka, Y., Ishii, R., and Ito, Y., Electrodeposition of Cu nanowire arrays with a template, J. Electroanal. Chem., 2003, vol. 559, p. 149.

    Article  CAS  Google Scholar 

  22. Blanco, S., Vargas, R., Mostany, J., Borrás, C., and Scharifker, B.R., Modeling the growth of nanowire arrays in porous membrane templates, J. Electrochem. Soc., 2014, vol. 161, p. E3341.

    Article  CAS  Google Scholar 

  23. Bograchev, D.A. and Davydov, A.D., The role of common outer diffusion layer in the metal electrodeposition into template nanopores, Electrochim. Acta, 2021, vol. 367, p. 137405.

    Article  CAS  Google Scholar 

  24. Bograchev, D.A., Volgin, V.M., and Davydov, A.D., Mass transfer during metal electrodeposition into the pores of anodic aluminum oxide from a binary electrolyte under the potentiostatic and galvanostatic conditions, Electrochim. Acta, 2016, vol. 207, p. 247.

    Article  CAS  Google Scholar 

  25. Bograchev, D.A. and Davydov, A.D., The shape of end-face surface of a wire growing in a template nanopore, J. Electroanal. Chem., 2021, vol. 900, p. 115709.

    Article  CAS  Google Scholar 

  26. Newman, J. and Thomas-Alyea, K.E., Electrochemical Systems, 2004.

  27. Shampine, L.F., Solving 0 = F(t,y(t),y′(t)) in matlab, J. Numer. Math., 2002, vol. 10, p. 291.

    Google Scholar 

  28. Gileadi, E., Kirowa-Eisner, E., and Penciner, J., Interfacial Electrochemistry: An Experimental Approach, New York: Addison-Wesley, Advanced Book Program, 1975.

    Google Scholar 

  29. Skeel, R.D. and Berzins, M., A method for the spatial discretization of parabolic equations in one space variable, SIAM J. Sci. Stat. Comput., 1990, vol. 11, p. 1.

    Article  Google Scholar 

  30. Bograchev, D., Influence of diffusion through a porous film under electrode surface in chronoamperometry problems, Defect Diffus. Forum, Trans. Tech. Publ., 2021, vol. 413, p. 84.

Download references

Funding

The work was performed with support of the Ministry of Science and Higher Education of Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. A. Bograchev or A. D. Davydov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Kabanova

APPENDIX

APPENDIX

Derivation of Equation for Metal Electrodeposition into Template Nanopores in the Quasi-Steady-State Approximation

Parameter c0M/ρ controls the ratio between the characteristic diffusion time and the deposition time [24]. The ratio is small for the majority of aqueous solutions. Therefore, it can be always assumed that the deposition proceeds in the steady-state diffusion mode, except for a relatively short initial period of time of reaching the steady-state concentration profile.

Following the works [16, 23], we derive the equation in the quasi-steady-state approximation. Let us write the Fick’s laws for the outer diffusion layer and the diffusion layer inside a pore:

$$i = - \frac{{{{c}_{0}} - {{c}_{s}}}}{\delta }D{{z}_{ + }}F,$$
(A1)
$$i = - \varepsilon \frac{{{{c}_{s}} - {{c}_{p}}}}{L}D{{z}_{ + }}F,$$
(A2)

where cs is the concentration at the template surface and cp is the concentration at the pore bottom. The porosity ε in equation (A2) is introduced to match the current density inside the pores and in the outer diffusion layer.

Equations (A1) and (A2) enable us to express the concentration at the pore bottom cp excluding the concentration at the template surface cs. To do this, equation (A1) is multiplied by δ/(Dz+F), equation (A2) is multiplied by L/ε (Dz+F), and thus obtained equations are combined. As a result, we obtain:

$${{c}_{p}} = {{c}_{0}} + i\frac{{\varepsilon \delta + L}}{{\varepsilon D{{z}_{ + }}F}}.$$
(A3)

Assume that the kinetics of electrodeposition is described by the Tafel equation. Then, taking into account the concentration at the pore bottom and porosity ε, the equation for the current density of metal deposition can be written as follows:

$$i = - \varepsilon {{i}_{0}}{{\left( {\frac{{{{c}_{p}}}}{{{{c}_{0}}}}} \right)}^{\gamma }}{{e}^{{ - \frac{{{{\alpha }_{{\text{c}}}}F\eta }}{{RT}}}}}.$$
(A4)

Introducing the kinetic length δk = \(\frac{{DF{{z}_{ + }}{{c}_{0}}}}{{{{i}_{0}}}}\exp \left( {\frac{{{{a}_{{\text{c}}}}F{{\eta }}}}{{RT}}} \right),\) equation (A3) can be written in the form similar to (A1) and (A2):

$$i = - \varepsilon \frac{{{{c}_{p}}}}{{{{\delta }_{{\text{k}}}}}}{{\left( {\frac{{{{c}_{p}}}}{{{{c}_{0}}}}} \right)}^{{\gamma \, - \,1}}}{{z}_{ + }}FD.$$
(A5)

Concentrations cp and cs can be excluded from (A1) using (A2) and (A3):

$$i = - \varepsilon \frac{{{{c}_{0}}D{{z}_{ + }}F}}{{L + \varepsilon {{\delta }_{{\text{D}}}} + {{\delta }_{{\text{k}}}}{{{\left( {1 + i\frac{{\varepsilon \delta + L}}{{{{c}_{0}}\varepsilon D{{z}_{ + }}F}}} \right)}}^{{1\, - \,\gamma }}}}}.$$
(A6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bograchev, D.A., Kabanova, T.B. & Davydov, A.D. Analysis of Effect of Concentration Dependence of Exchange Current on Metal Electrodeposition into Template Nanopores. Russ J Electrochem 59, 651–659 (2023). https://doi.org/10.1134/S1023193523090045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523090045

Keywords:

Navigation