Skip to main content
Log in

Electrochemical Determination of Vanillin in Commercial Food Products Using Cyclic and Differential Pulse Voltammetry at an Iodine-Coated Platinum Electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A voltammetric method for the determination of vanillin in food products utilizing iodine-coated polycrystalline platinum electrode is developed. Differential-pulse voltammetry (DPV) was applied for the quantitative determination of vanillin. A 0.1 M KCl solution was used as a supporting electrolyte. The measurements were made in the potential range –0.2 to 1.0 V vs. Ag/AgCl/[Cl] = 0.1 M and all the reported potentials are referenced to this electrode. The anodic peak for the oxidation of vanillin was observed at ~0.84 V. The calibration curve was constructed for the peak current vs. the vanillin. A linear relationship between the peak current and the vanillin concentration was demonstrated with a calibration equation: ip(μA) = 0.003CVanillin + 0.1237. The working range for the developed method is for 1 to 250 µM and the coefficient of determination R2 is 0.9974. The limit of detection, LOD (based on S/N = 3) is 0.364 µM and the limit of quantitation (based on S/N = 10) is 1.21 µM. The developed method was successfully applied to the analysis of vanillin in food product samples like biscuits, cakes, and wafers with recovery values ranged from 94.41 and 103.18%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Vijayalakshmi, S., Disalva, X., Chittaranjan Srivastava, and Arun A., Vanilla-natural vs. artificial a review, Res. J. Pharm. Tech., 2016, vol. 12, p. 3068.

    Article  Google Scholar 

  2. Sinha, A.K., Sharma, U.K., and Sharma, N.A., A comprehensive review on vanilla flavor: extraction, isolation and quantification of vanillin and others constituents, Int. J. Food Sci. Nutr., 2008, vol. 59, p. 299.

    Article  CAS  PubMed  Google Scholar 

  3. Fu, L., Xie, K., Wu, D., Wang, A., Zhang, H., and Ji, Z., Electrochemical determination of vanillin in food samples by using pyrolyzed graphitic carbon nitride, Mater. Chem. Phys., 2020, vol. 242, p. 122462.

    Article  CAS  Google Scholar 

  4. Agüí., L., López-Guzmán, J.E., González-Cortés, A., Yáñez-Sedeño, P., and Pingarrón, J.M., Analytical performance of cylindrical carbon fiber microelectrodes in low-permitivity organic solvents: determination of vanillin in ethyl acetate, Anal. Chim. Acta, 1999, vol. 385, p. 241.

    Article  Google Scholar 

  5. Zhao, J., Xia, H., Yu, T., Jin, L., Li, X., Zhang, Y., Shu, L., Zeng, L., and He, Z., A colorimetric assay for vanillin detection by determination of the luminescence of o-toluidine condensates, PLoS One, 2018, vol. 13, p. 1.

    Google Scholar 

  6. Rind, F.M.A., Mughal, U.R., Memon, A.H., Almani, F., Laghari, M.G.H., Maheshwari, M.L., Khuhawar, M.Y., Memon, N., and Dayo, A., Spectrophotometric analysis of vanillin from natural and synthetic sources, Asian J. Chem., 2009, vol. 4, p. 2849.

    Google Scholar 

  7. Carnero, R.C., Heredia, B.A., and Garcia, S.F., Derivatives spectrophotometric determination of vanillin and p hydroxybenzaldehyde in vanilla bean extracts, J. Agric. Food Chem., 1990, vol. 38, p. 178.

    Article  Google Scholar 

  8. Krzysztof, N.W., Violeta, T.P., and Sandy, L.O., A simple and rapid HPLC technique for vanillin determination in alcohol extract, Food Chem., 2007, vol. 101, p. 1059.

    Article  Google Scholar 

  9. Sidney, K. and Dana, A.K., Collaborators: liquid chromatographic method for determination of vanillin and ethyl vanillin in imitation vanilla extract (modification of AOAC official method 990.25), collaborative study, J. AOAC., 1997, vol. 80, p. 564.

    Article  Google Scholar 

  10. Makoto, T., Shizuka, S., and Akira, F., Simultaneous analysis of guaiacol and vanillin in a vanilla extract by using high-performance liquid chromatography with electrochemical detection, Biosci., Biotechnol., Biochem., 2013, vol. 77, p. 595.

    Article  Google Scholar 

  11. Banerjee, S., McCracken, S., Hossain, M.F., and Slaughter, G., Electrochemical detection of neurotransmitters, Biosensors, 2020, vol. 10, p. 1.

    Article  Google Scholar 

  12. Cox, J.A. and Kulesza, P.J., Oxidation and determination of nitrite at modified electrodes, J. Electroanal. Chem., 1984, vol. 175, p. 105.

    Article  CAS  Google Scholar 

  13. Hanssen, B.L., Siraj, S., and Wong, D.K.Y., Recent strategies to minimise fouling in electrochemical detection systems, Rev. Anal. Chem., 2016, vol. 35, p. 1.

    Article  CAS  Google Scholar 

  14. Kim, H.S., Kim, H., Flores, M.C., Jung, G.-S., and In, S.-I., Surface modification of electrocatalyst for optimal adsorption of reactants in oxygen evolution reaction, Catalysts, 2021, vol. 1, p. 717.

    Article  Google Scholar 

  15. Mohammad, A. and Mohammed, K.H., Determination of iron in dietary supplements by voltammetric analysis at an iodine-coated polycrystalline platinum electrode, Int. J. Electrochem. Sci., 2018, vol. 13, p. 975.

    Article  Google Scholar 

  16. Mohammed, K.H., Determination of silver(I) by cyclic voltammetry at iodine-coated electrodes, Analyst, 1994, vol. 119, p. 1975.

    Article  Google Scholar 

  17. Ross, F.L., Arthur, T.H., Ken, F., and Robert, J.B., Brain catecholamines: detection in vivo by means of differential pulse voltammetry at surface-modified platinum electrodes, Brain Res., 1976, vol. 114, p. 346.

    Article  Google Scholar 

  18. Hourani, M., Jarar, M., and Arar, S., Atmospheric SO2 determination by voltammetric analysis at an iodine-coated platinum electrode, Electroanalysis, 1999, vol. 9, p. 637.

    Article  Google Scholar 

  19. Hourani, M.K. and Esaifan, M., Indirect voltammetric method for determination of nitrogen dioxide in the ambient atmosphere, Jordan J. Chem., 2009, vol. 4, p. 367.

    Google Scholar 

  20. Hourani, M.K. and Hijaz, B., Voltammetric analysis of hydroquinone and catechol at iodine-coated polycrystalline platinum electrode, J. Nat. Eng. Sci., 2014, vol. 8, p. 25.

    Google Scholar 

  21. Mohammad, A. and Mohammed, H., Direct determination of hemoglobin in blood using iodine-coated platinum polycrystalline electrode, Anal. Bioanal. Chem. Res., 2019, vol. 6, p. 59.

    Google Scholar 

  22. Mohammed, K.H., Mohammad, A., and Wafa, H., A voltammetric sensor based on iodine-coated platinum electrode for determination of iron in blood serum, Anal. Bioanal. Electrochem., 2018, vol. 10, p. 1620.

    Google Scholar 

  23. Mohammad, A. and Mohammed, H., Determination of iron in spinach using sweep voltammetry at iodine-coated platinum rotating disk electrode, J. AOAC Int., 2019, vol. 102, p. 666.

    Article  Google Scholar 

  24. Amayreh, M., Hourani, W., and Hourani, M.K., Anodic stripping voltammetric determination of copper in multivitamin-mineral formulations using iodine-coated platinum electrode, Methods Objects Chem. Anal., 2021, vol. 16, p. 48.

    Article  CAS  Google Scholar 

  25. Amayreh, M., Hourani, W., and Hourani, M.K., Voltammetric determination of paracetamol in pharmaceutical formulations at iodine-coated polycrystalline platinum electrode, Methods Objects Chem. Anal., 2021, vol. 16, p. 103.

    Article  CAS  Google Scholar 

  26. Amayreh, M., Mohammed, K.H., Alomari, R., and Hourani, W., Iron determination in deep groundwater wells by anodic stripping voltammetry at an iodine-coated platinum electrode, Port. Electrochem. Acta, 2021, vol. 39, p. 421.

    Article  CAS  Google Scholar 

  27. Amayreh, M., Hourani, W., and Hourani, M.K., Voltammetric determination of ascorbic acid in pharmaceutical formulations using modified iodine-coated platinum electrode, Vitae, 2022, vol. 28, p. 1.

    Google Scholar 

  28. Amayreh, M., Fraihat, S., Hourani, W., and Hourani, M.K., Voltammetric determination of gallic acid and its content in tea samples using modified iodine-coated platinum electrode, Trop. J. Nat. Prod. Res., 2021, vol. 5, p. 1072.

    Article  CAS  Google Scholar 

  29. Fort, C.I., Cobzac, S.C.A., and Turdean, G.L., Second-order derivative of square-wave voltammetry for determination of vanillin at platinum electrode, Food Chem., 2022, vol. 385, p. 132711.

    Article  CAS  PubMed  Google Scholar 

  30. Bettazzi, F., Palchetti, I., Sisalli, S., and Mascini, M., A disposable electrochemical sensor for vanillin detection, Anal. Chim. Acta, 2006, vol. 555, p. 134.

    Article  CAS  Google Scholar 

  31. Hardcastle, J.L., Paterson, C.J., and Compton, R.G., Biphasic sonoelectroanalysis: simultaneous extraction from, and determination of vanillin in food flavoring, Electroanalysis, 2001, vol. 13, p. 899.

    Article  CAS  Google Scholar 

  32. Luque, M., Luque-Pérez, E., Ríos, A., and Valcárcel, M., Supported liquid membranes for the determination of vanillin in food samples with amperometric detection, Anal. Chim. Acta, 2001, vol. 410, p. 127.

    Article  Google Scholar 

  33. Zheng, D., Hu, C., Gan, T., Dang, X., and Hu, S., Preparation and application of a novel vanillin sensor based on biosynthesis of Au–Ag alloy nanoparticles, Sens. Actuators B: Chem., 2010, vol. 148, p. 247.

    Article  CAS  Google Scholar 

  34. Peng, J.Y., Hou, C.T., and Hu, X.Y., A graphene-based electrochemical sensor for sensitive detection of vanillin, Int. J. Electrochem. Sci., 2012, vol. 40, p. 1722.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Amayreh.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad Amayreh, Hourani, W., Fraihat, S. et al. Electrochemical Determination of Vanillin in Commercial Food Products Using Cyclic and Differential Pulse Voltammetry at an Iodine-Coated Platinum Electrode. Russ J Electrochem 59, 690–696 (2023). https://doi.org/10.1134/S1023193523090033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523090033

Keywords:

Navigation