Skip to main content
Log in

Effect of Current Density on Growth Law of Manganese Electrodeposition

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Manganese sulfate solution would be affected by various factors in electrolytic production of manganese. When different electrolysis time was controlled, the effects of current density on the growth law of cathode manganese, the current efficiency, cell voltage and energy consumption in the electrodeposition process were studied. The results showed that too low or too high current density was not conducive to the growth of manganese grains. When the current density was about 450 A/m2, the manganese grains grew uniformly with spherical morphology and the cathode manganese sheet had high density. The α-manganese with good crystallinity and high density was obtained after electrodeposition for 10 h. Under this current density, the current efficiency of manganese deposition was high, the cell voltage was stable, and the energy consumption was low. The average current efficiency was 71.656%, the cell voltage fluctuated between 3.89 and 3.95 V, and the average energy consumption was 5.33 kW h/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Padhy, S.K., Tripathy, B.C., and Alfantazi, A., Effect of sodium alkyl sulfates on electrodeposition of manganese metal from sulfate solutions in the presence of sodium metabisulphite, Hydrometallurgy, 2018, vol. 177, p. 227.

    Article  CAS  Google Scholar 

  2. Zhang, R.R., Ma, X.T., Shen, X.X., Zhai, Y.J., Zhang, T.Z., Ji, C.X., and Hong, J.L., Life cycle assessment of electrolytic manganese metal production, J. Cleaner. Prod., 2020, vol. 253, p. 119951.

    Article  CAS  Google Scholar 

  3. Lin, Q.Q., Gu, G.H., Wang, H., Zhu, R.F., Liu, Y.C., and Fu, J.G., Preparation of manganese sulfate from low-grade manganese carbonate ores by sulfuric acid leaching, Int. J. Min. Met. Mater., 2016, vol. 23, p. 491.

    Article  CAS  Google Scholar 

  4. Makhanbetov, A., Zharmenov, A., Bayeshiv, A., and Baigenzhenov, O., Production of electrolytic manganese from sulfate solutions, Russ. J. Non-Ferr. Met+., 2015, vol. 56, p. 606.

    Article  Google Scholar 

  5. Lu, J.M., David, D., and Thomas, G., Electrolytic manganese metal production from manganese carbonate precipitate, Hydrometallurgy, 2016, vol. 161, p. 45.

    Article  CAS  Google Scholar 

  6. Artur, K., Shahid, A., Inge, J., and Jafar, S., Aluminothermic reduction of manganese oxide from selected MnO-containing slags, Materials, 2021, vol. 14, p. 356.

    Article  Google Scholar 

  7. Li, C.X., Yu, Y., Zhang, Q.W., Jiang, J.C., Zhong, H., and Wang, S., A novel circulation process to effectively produce Electrolytic Manganese Metal (EMM) with low-grade manganese oxide ores and high-sulfur manganese ores, Arab. J. Sci. Eng., 2020, vol. 45, p. 1.

    Article  Google Scholar 

  8. Li, W.J., Tan, R., Zhang, L.Y., and Liang, H., An analysis and prospect ofelectrolytic manganese industry in 2018, Chin. Manganese Ind., 2019, vol. 37, p. 1.

    Google Scholar 

  9. Duan, N., Dan, Z.G., Wang, F., Pan, C.X., Zhou, C.B., and Jiang, L.H., Electrolytic manganese metal industry experience-based China’s new model for cleaner production promotion, J. Clean. Prod., 2011, vol. 19, p. 2082.

    Article  Google Scholar 

  10. Yang, T.Y., Xue, Y., Liu, X.M., and Zhang, Z.Q., Solidification/stabilization and separation/extraction treatments of environmental hazardous components in electrolytic manganese residue: a review, Process. Saf. Environ., 2022, vol. 157, p. 509.

    Article  CAS  Google Scholar 

  11. He, D.J., Shu, J.C., Wang, R., Chen, M.J., and Wang, R., A critical review on approaches for electrolytic manganese residue treatment and disposal technology: reduction, pretreatment, and reuse, J. Hazard. Mater., 2021, vol. 418, p. 126235.

    Article  CAS  PubMed  Google Scholar 

  12. Guo, H.J., Zhu, B.Q., Li, X.H., Zhang, X.M., Wang, Z.X., Peng, W.J., and Liu, L.P., Effects of current density on preparation of grainy electrolytic manganese dioxide, J. Cent. South. Univ., 2005, vol. 12, p. 667.

    Article  CAS  Google Scholar 

  13. Xu, F.Y., Dan, Z.G., Zhao, W.N., and Han, G.M., Electrochemical analysis of manganese electrodeposition and hydrogen evolution from pure aqueous sulfate electrolytes with addition of SeO2, J. Electroanal. Chem., 2015, vol. 741, p. 149.

    Article  CAS  Google Scholar 

  14. Tsurtsumia, G., Shengelia, D., Koiava, N., and Lezhava, T., Novel hydro-electrometallurgical technology for simultaneous production of manganese metal, electrolytic manganese dioxide, and manganese sulfate monohydrate, Hydrometallurgy, 2019, vol. 186, p. 260.

    Article  CAS  Google Scholar 

  15. Tsurtsumia, G.S., Koiava, N.S., and Gogishvili, N.S., Simultaneous production of electrolytic metallic manganese and electrolytic manganese dioxide in an AMI 7001S anion exchange membrane electrochemical reactor, J. Electrochem. Soc., 2015, vol. 162, p. E96.

    Article  CAS  Google Scholar 

  16. Wei, Q.F., Ren, X.L., and Du, J., Study of the electrodeposition conditions of metallic manganese in an electrolytic membrane reactor, Miner. Eng., 2010, vol. 23, p. 578.

    Article  CAS  Google Scholar 

  17. Luo, S.L., Guo, H.J., Wang, Z.X., and Li, X.H., The electrochemical performance and reaction mechanism of coated titanium anodes for manganese electrowinning, J. Electrochem. Soc., 2019, vol. 166, p. E502.

    Article  CAS  Google Scholar 

  18. Jacobs, J.H., Churchward, P.E., and Knickerbocker, R.G., The effect of certain variables on the electrodeposition of manganese, Trans. Electrochem. Soc., 2019, vol. 86, p. 383.

    Article  Google Scholar 

  19. Zhang, X.R., Zhang, X.Y., Liu, Z.H., Tao, C.Y., and Quan, X.J., Pulse current electrodeposition of manganese metal from sulfate solution, J. Environ. Chem. Eng., 2019, vol. 7, p. 103010.

    Article  CAS  Google Scholar 

  20. Gong, J. and Zangari, G., Electrodeposition and characterization of manganese coatings, J. Electrochem. Soc., 2002, vol. 149, p. C209.

    Article  CAS  Google Scholar 

  21. Cao, X.Z., Dreisinger, D.B., Lu, J.M., and Belanger, F., Electrorefining of high purity manganese, Hydrometallurgy, 2017, vol. 171, p. 412.

    Article  CAS  Google Scholar 

  22. Jiao, P.P., Xu, F.Y., Li, J.H., Duan, N., and Chen, G.Y., The inhibition effect of SeO2 on hydrogen evolution reaction in MnSO4-(NH4)2SO4 solution, Int. J. Hydrogen Energy, 2016, vol. 41, p. 784.

    Article  CAS  Google Scholar 

  23. Pérez-Garibay, R., Rojas-Montes, J.C., Bello-Teodoro, S., and Flores-Álvarez, M., Effect of SeO2 on the morphology of electrodeposited manganese, J. Appl. Electrochem., 2020, vol. 50, p. 1.

    Article  Google Scholar 

  24. Qin, J.T., Wang, J.W., Wang, H.F., and Zhao, P.Y., Equilibrium distribution of Mg in manganese electrolysis system, Mater. Res. Express, 2019, vol. 6, p. 964d.

    Article  Google Scholar 

  25. Tian, J.Y., Wang, H.F., You, X.Y., Chen, X.L., and Wang, J.W., Study on the growth law of manganese in electrolysis process of MnSO4 solution containing magnesium, IOP Conf, Ser,: Earth Environ. Sci., 2021, vol. 668, p. 12085.

    Google Scholar 

  26. Wang, H.F., Qin, J.T., and Tian, J.Y., The effects of Mg2+ concentration, (NH4)2SO4 concentration and current density on electrolytic manganese process, Mater. Res. Express, 2021, vol. 8, p. 26509.

    Article  CAS  Google Scholar 

  27. Yang, F., Jiang, L.X., Yu, X.Y., and Liu, F.Y., Catalytic effects of NH4+ on hydrogen evolution and manganese electrodeposition on stainless steel, Trans. Nonferrous Met. Soc. China, 2019, vol. 29, p. 2430.

    Article  CAS  Google Scholar 

  28. Ding, L.F., Fan, X., and Du, J., Influence of three N‑based auxiliary additives during the electrodeposition of manganese, Int. J. Miner. Process., 2014, vol. 130, p. 34.

    Article  CAS  Google Scholar 

  29. Singh, V., Chakraborty, T., and Tripathy, S.K., A review of low grade manganese ore upgradation processes, Miner. Process Extr. Metall. Rev., 2020, vol. 41, p. 417.

    Article  CAS  Google Scholar 

  30. Hefnawy, M.A., Fadlallah, S.A., and El-Sherif, R.M., Nickel-manganese double hydroxide mixed with reduced graphene oxide electrocatalyst for efficient ethylene glycol electrooxidation and hydrogen evolution reaction, Synth. Met., 2021, vol. 282, p. 116959.

    Article  CAS  Google Scholar 

  31. Yang, F., Jiang, L., and Yu, X., Hydrogen evolution behavior of aluminum cathode in comparison with stainless steel for electrowinning of manganese in sulfate solution, Hydrometallurgy, 2018, vol. 179, p. 245.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

First of all, I would like to thank the college for providing testing equipment and experimental platform. Secondly, thanks for the technical help provided by Beijing Zhongke Baice Technology Service Co., Ltd. Finally, thanks to the lab teachers for their help.

The author sincerely thanks the reviewers for their views and suggestions to further improve the quality of the manuscript.

Funding

The funding supports for this study were obtained from National Natural Science Foundation of China (51864012, 51764008); Guizhou Provincial Science Cooperation Program ([2019] 1411, [2019] 2841).

Author information

Authors and Affiliations

Authors

Contributions

S. Wang and J.W. Wang сontributed equally to this work.

Corresponding author

Correspondence to H. F. Wang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, J.W., Tian, J.Y. et al. Effect of Current Density on Growth Law of Manganese Electrodeposition. Russ J Electrochem 59, 616–627 (2023). https://doi.org/10.1134/S1023193523080116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523080116

Keywords:

Navigation