Skip to main content
Log in

Simulation of Mediator-Catalysis Process inside Redox Flow Battery

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Reduction of alkali or alkaline earth metal chlorates to chlorides is of great interest for its use as the positive-electrode process of a redox flow battery in view of very large theoretical estimates of its specific charge per solution unit mass or volume owing to high solubilities of the reagent and the product as well as to the six-electron transfer per one chlorate ion. Such use of this oxidizing agent requires overcoming a fundamental difficulty: the non-electroactivity of the chlorate anion at electrodes in the required potential range. Promising approach to the implementation of this process is using a mediator catalysis based on an Ox/Red redox couple which has a high positive potential and a fairly large exchange current, while its Red form is able reacting chemically in solution with the chlorate anion, reducing it to the chloride anion, with regeneration of the Ox form. Such a mediator cycle can be implemented in the positive part of the flow battery based on multiple pumping of the solution from the reservoir through the discharging device for the electrochemical conversion of the Ox form of the redox couple into the Red component, with the electricity generation. Meanwhile, the chemical stage, i.e., the reaction of the chlorate anion with the Red form takes place inside the reservoir. Theoretical analysis of the functioning of such a system under galvanostatic mode has been performed in this study. Time-variation of the component concentrations and the electrode potential has been predicted. Two different scenarios for the system evolution have been revealed, depending on the relationship between the passing current and its critical value. Treatment of experimental data for the variation of the electrode potential and the redox-couple component (Ox or Red) concentration are proposed, in order to establish the values of the system parameters including the critical current value and the rate constant of the chemical stage of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Huskinson, B., Rugolo, J., Mondal, S.K., and Aziz, M.J., A high power density, high efficiency hydrogen-chlorine regenerative fuel cell with a low precious metal content catalyst, Energy and Environmental Sci., 2012, vol. 5, no. 9, p. 8690. https://doi.org/10.1039/C2EE22274D

    Article  CAS  Google Scholar 

  2. Kreutzer, H., Yarlagadda, V., and Nguyen, T.V., Performance evaluation of a regenerative hydrogen-bromine fuel cell, J. Electrochem. Soc., 2012, vol. 159, no. 7, p. F331. https://doi.org/10.1149/2.086207jes

    Article  CAS  Google Scholar 

  3. Tolmachev, Y.V., Hydrogen-halogen electrochemical cells: A review of applications and technologies, Russ. J. Electrochem., 2014, vol. 50, p. 301. https://doi.org/10.1134/S1023193513120069

    Article  CAS  Google Scholar 

  4. Jameson, A. and Gyenge, E., Halogens as positive electrode active species for flow batteries and regenerative fuel cells, Electrochem. Energy Rev., 2020, vol. 3, no. 3, p. 431. https://doi.org/10.1007/s41918-020-00067-2

    Article  CAS  Google Scholar 

  5. Li, X., Xie, C., Li, T., Zhang, Y., and Li, X., Low-Cost Titanium–Bromine Flow Battery with Ultrahigh Cycle Stability for Grid-Scale Energy Storage, Advanced Mater., 2020, vol. 32, no. 49, p. 2005036. https://doi.org/10.1002/adma.202005036

    Article  CAS  Google Scholar 

  6. Pan, Z., Bi, Y., and An, L., Performance characteristics of a passive direct ethylene glycol fuel cell with hydrogen peroxide as oxidant, Appl. Energy, 2019, vol. 250, p. 846. https://doi.org/10.1016/j.apenergy.2019.05.072

    Article  CAS  Google Scholar 

  7. Oh, T.H., Gold-based bimetallic electrocatalysts supported on multiwalled carbon nanotubes for direct borohydride–hydrogen peroxide fuel cell, Renewable Energy, 2021, vol. 163, p. 930. https://doi.org/10.1016/j.renene.2020.09.028

    Article  CAS  Google Scholar 

  8. Li, B., Song, C., Huang, X., Ye, K., Cheng, K., Zhu, K., and Wang, G., A novel anode for direct borohydride-hydrogen peroxide fuel cell: Au nanoparticles decorated 3D self-supported reduced graphene oxide foam, ACS Sustainable Chem. Engng., 2019, vol. 7, no. 13, p. 11129. https://doi.org/10.1021/acssuschemeng.9b00192

    Article  CAS  Google Scholar 

  9. Lu, B., Yuan, W., Su, X., Zhuang, Z., Ke, Y., and Tang, Y., Passive Direct Methanol–Hydrogen Peroxide Fuel Cell with Reduced Graphene Oxide–Supported Prussian Blue as Catalyst, Energy Technol., 2020, vol. 8, no. 3, p. 1901360. https://doi.org/10.1002/ente.201901360

    Article  CAS  Google Scholar 

  10. Zhang, H., Yang, Y., Liu, T., and Chang, H., Boosting the power-generation performance of micro-sized Al-H2O2 fuel cells by using silver nanowires as the cathode, Energies, 2018, vol. 11, no. 9, p. 2316. https://doi.org/10.3390/en11092316

    Article  CAS  Google Scholar 

  11. Yang, Z., Gerhardt, M. R., Fortin, M., Shovlin, C., Weber, A.Z., Perry, M.L., and Saraidaridis, J.D., Polysulfide-permanganate flow battery using abundant active materials, J. Electrochem. Soc., 2021, vol. 168, no. 7, p. 070516. https://doi.org/10.1149/1945-7111/ac1036

    Article  CAS  Google Scholar 

  12. Liu, C., Liu, H., and Liu, L., Potassium permanganate as an oxidant for a microfluidic direct formate fuel cell, Int. J. Electrochem. Sci., 2019, vol. 14, p. 4557. https://doi.org/10.20964/2019.05.01

    Article  CAS  Google Scholar 

  13. Licht, S., A novel aqueous aluminum| permanganate fuel cell, Electrochem. Commun., 1999, vol. 1, p. 33. https://doi.org/10.1016/S1388-2481(98)00010-1

    Article  CAS  Google Scholar 

  14. Kim, C., Lee, C. R., Song, Y. E., Heo, J., Choi, S. M., Lim, D. H., and Kim, J. R., Hexavalent chromium as a cathodic electron acceptor in a bipolar membrane microbial fuel cell with the simultaneous treatment of electroplating wastewater, Chem. Engg. J., 2017, vol. 328, p. 703. https://doi.org/10.1016/j.cej.2017.07.077

    Article  CAS  Google Scholar 

  15. Shimin, Z., Sulin, C., Debi, Z., Wei, Q., Yu, H., and Xiang, C., Pilot study of an aqueous zinc–bichromate battery, Energy & fuels, 2009, vol. 23, no. 3, p. 1668. https://doi.org/10.1021/ef800848p

    Article  CAS  Google Scholar 

  16. Hsu, L., Masuda, S.A., Nealson, K.H., and Pirbazari, M., Evaluation of microbial fuel cell Shewanella biocathodes for treatment of chromate contamination, RSC Advances, 2012, vol. 2, p. 5844. https://doi.org/10.1039/C2RA20478A

    Article  CAS  Google Scholar 

  17. Leung, P.K., Ponce-de-León, C., Low, C.T.J., Shah, A.A., and Walsh, F.C., Characterization of a zinc–cerium flow battery, J. Power Sources, 2011, vol. 196, no. 11, p. 5174. https://doi.org/10.1016/j.jpowsour.2011.01.095

    Article  CAS  Google Scholar 

  18. Leung, P.K., Mohamed, M.R., Shah, A.A., Xu, Q., and Conde-Duran, M.B., A mixed acid based vanadium–cerium redox flow battery with a zero-gap serpentine architecture, J. Power Sources, 2015, vol. 274, p. 651. https://doi.org/10.1016/j.jpowsour.2014.10.034

    Article  CAS  Google Scholar 

  19. Sankarasubramanian, S., Zhang, Y., and Ramani, V., Methanesulfonic acid-based electrode-decoupled vanadium–cerium redox flow battery exhibits significantly improved capacity and cycle life, Sustainable Energy Fuels, 2019, vol. 3, no. 9, p. 2417. https://doi.org/10.1039/C9SE00286C

    Article  CAS  Google Scholar 

  20. Amini, K. and Pritzker, M.D., In situ polarization study of zinc–cerium redox flow batteries, J. Power Sources, 2020, vol. 471, p. 228463. https://doi.org/10.1016/j.jpowsour.2020.228463

    Article  CAS  Google Scholar 

  21. Li, Y., Geysens, P., Zhang, X., Sniekers, J., Fransaer, J., Binnemans, K., and Vankelecom, I. F., Cerium-containing complexes for low-cost, non-aqueous redox flow batteries (RFBs), J. Power Sources, 2020, vol. 450, p. 227634. https://doi.org/10.1016/j.jpowsour.2019.227634

    Article  CAS  Google Scholar 

  22. Chakrabarti, B., Yufit, V., Kavei, A., Xia, Y., Stevenson, G., Kalamaras, E., and Brandon, N., Charge/discharge and cycling performance of flexible carbon paper electrodes in a regenerative hydrogen/vanadium fuel cell, Intern. J. Hydrogen Energy, 2019, vol. 44, no. 57, p. 30093. https://doi.org/10.1016/j.ijhydene.2019.09.151

    Article  CAS  Google Scholar 

  23. Dewage, H.H., Yufit, V., and Brandon, N.P., Study of loss mechanisms using half-cell measurements in a regenerative hydrogen vanadium fuel cell, J. Electrochem. Soc., 2015, vol. 163, no. 1, p. A5236. https://doi.org/10.1149/2.0301601jes

    Article  CAS  Google Scholar 

  24. Pasala, V. and Ramanujam, K., Paper-Based Disposable Zinc–Vanadium Fuel Cell for Micropower Applications, Chem. Select, 2019, vol. 4, no. 29, p. 8398. https://doi.org/10.1002/slct.201802624

    Article  CAS  Google Scholar 

  25. Rubio-Garcia, J., Kucernak, A., Parra-Puerto, A., Liu, R., and Chakrabarti, B., Hydrogen/functionalized benzoquinone for a high-performance regenerative fuel cell as a potential large-scale energy storage platform, J. Mater. Chem. A, 2020, vol. 8, no. 7, p. 3933. https://doi.org/10.1039/C9TA12396B

    Article  CAS  Google Scholar 

  26. Han, S.B., Kwak, D.H., Park, H.S., Park, J.Y., Ma, K.B., Won, J.E., and Park, K.W., A chemically regenerative redox fuel cell using (2,2,6,6-tetramethylpiperidin-1-yl)oxyl redox reaction in acid medium, J. Power Sources, 2018, vol. 393, p. 32. https://doi.org/10.1016/j.jpowsour.2018.05.009

    Article  CAS  Google Scholar 

  27. Li, G., Wang, Y., Yu, F., Lei, Y., and Hu, Z., Deep oxidization of glucose driven by 4-acetamido-TEMPO for a glucose fuel cell at room temperature, Chem. Commun., 2021, vol. 57, no. 33, p. 4051. https://doi.org/10.1039/D0CC08381J

    Article  CAS  Google Scholar 

  28. Ovsyannikov, N.A., Romadina, E.I., Akhmetov, N.O., Gvozdik, N.A., Akkuratov, A.V., Pogosova, M.A., and Stevenson, K.J., All-organic non-aqueous redox flow batteries with advanced composite polymer-ceramic Li-conductive membrane, J. Energy Storage, 2022, vol. 46, p. 103810. https://doi.org/10.1016/j.est.2021.103810

    Article  Google Scholar 

  29. Petrov, M.M., Modestov, A.D., Konev, D.V., Antipov, A.E., Loktionov, P.A., Pichugov, R.D., Karta-shova, N.V., Glazkov, A.T., Abunaeva, L.Z., Andreev, V.N., and Vorotyntsev, M.A., Redox flow batteries: importance in modern electrical energy industry and comparative characteristics of the main types, Russ. Chem. Rev., 2021, vol. 90, p. 677.

    Article  Google Scholar 

  30. Fang, X., Li, Z., Zhao, Y., Yue, D., Zhang, L., and Wei, X., Multielectron organic redoxmers for energy-dense redox flow batteries, ACS Mater. Lett., 2022, vol. 4, p. 277. https://doi.org/10.1021/acsmaterialslett.1c00668

    Article  CAS  Google Scholar 

  31. Tolmachev, Y.V., Piatkivskyi, A., Ryzhov, V.V., Konev, D.V., and Vorotyntsev, M.A., Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion, J. Solid State Electrochem., 2015, vol. 19, no. 9, p. 2711. https://doi.org/10.1007/s10008-015-2805-z

    Article  CAS  Google Scholar 

  32. Vorotyntsev, M.A., Antipov, A.E., and Konev, D.V., Bromate anion reduction: novel autocatalytic (EC") mechanism of electrochemical processes. Its implication for redox flow batteries of high energy and power densities, Pure Appl. Chem., 2017, vol. 89, no. 10, p. 1429. https://doi.org/10.1515/pac-2017-0306

    Article  CAS  Google Scholar 

  33. Vorotyntsev, M.A., Konev, D.V., and Tolmachev, Y.V., Electroreduction of halogen oxoanions via autocatalytic redox mediation by halide anions: novel EC" mechanism. Theory for stationary 1D regime, Electrochim. Acta, 2015, vol. 173, p. 779. https://doi.org/10.1016/j.electacta.2015.05.099

    Article  CAS  Google Scholar 

  34. Vorotyntsev, M.A. and Antipov, A.E., Bromate electroreduction in acidic solution inside rectangular channel under flow-through porous electrode conditions, Electrochim. Acta, 2019, vol. 323, p. 134799. https://doi.org/10.1016/j.electacta.2019.134799

    Article  CAS  Google Scholar 

  35. Vorotyntsev, M.A. and Konev, D.V., Halate electroreduction via autocatalytic mechanism for rotating disk electrode configuration evolution of concentrations and current after large-amplitude potential step, Electrochim. Acta, 2021, vol. 391, p. 138914. https://doi.org/10.1016/j.electacta.2021.138914

    Article  CAS  Google Scholar 

  36. Vorotyntsev, M.A., Volgin, V.M., and Davydov, A.D., Halate electroreduction from acidic solution at rotating disc electrode. Theoretical study of the steady-state convective-migration-diffusion transport for comparable concentrations of halate ions and protons, Electrochim. Acta, 2022, vol. 409, p. 139961. https://doi.org/10.1016/j.electacta.2022.139961

    Article  CAS  Google Scholar 

  37. Modestov, A.D., Konev, D.V., Antipov, A.E., Petrov, M.M., Pichugov, R.D., and Vorotyntsev, M.A., Bromate electroreduction from sulfuric acid solution at rotating disk electrode: experimental study, Electrochim. Acta, 2018, vol. 259, p. 655. https://doi.org/10.1016/j.electacta.2017.10.199

    Article  CAS  Google Scholar 

  38. Konev, D.V., Antipov, A.E., Petrov, M.M., Shamraeva, M.A., and Vorotyntsev, M.A., Surprising dependence of the current density of bromate electroreduction on the microelectrode radius as manifestation of the autocatalytic redox-cycle (EC") reaction mechanism, Electrochem. Commun., 2018, vol. 86, p. 76. https://doi.org/10.1016/j.elecom.2017.11.006

    Article  CAS  Google Scholar 

  39. Modestov, A.D., Konev, D.V., Tripachev, O.V., Antipov, A.E., Tolmachev, Y.V., and Vorotyntsev, M.A., A Hydrogen–Bromate Flow Battery for Air-Deficient Environments, Energy Technol., 2018, vol. 6, p. 242. https://doi.org/10.1002/ente.201700447

    Article  CAS  Google Scholar 

  40. Modestov, A.D., Konev, D.V., Antipov, A.E., and Vorotyntsev, M.A., Hydrogen-bromate flow battery: can one reach both high bromate utilization and specific power? J. Solid State Electrochem., 2019, vol. 23, no. 11, p. 3075. https://doi.org/10.1007/s10008-019-04371-w

    Article  CAS  Google Scholar 

  41. Modestov, A.D., Andreev, V.N., Antipov, A.E., and Petrov, M.M., Novel aqueous zinc–halogenate flow batteries as an offspring of zinc–air fuel cells for use in oxygen-deficient environment, Energy Technol., 2021, vol. 9, p. 2100233. https://doi.org/10.1002/ente.202100233

    Article  CAS  Google Scholar 

  42. Mussini, T. and Longhi, P., The Halogens. Bromine, in Standard Potentials in Aqueous Solutions, Bard, A.J., Parsons, R., and Jordan J., Eds., New York: Marcel Dekker, 1985, p. 78. https://books.google.ru/books? id=fuJV1H18KtEC&pg=PA67&hl=ru&source=gbs_ toc_r&cad=4#v=onepage&q&f=false

    Google Scholar 

  43. Zader, P.A., Konev, D.V., Gun, J., Lev, O., and Vorotyntsev, M.A., Theoretical analysis of system’s composition changes in the course of electrolysis of acidic aqueous chloride solution, Russ. J. Electrochem., 2022, vol. 58, no. 10, in press.

  44. Skrabal, A. and Schreiner, H., Die Reduktionsgeschwindigkeit der Chlorsäure und Bromsäure, Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1934, vol. 65, no. 1, p. 213. https://doi.org/10.1007/bf01522061

  45. Taube, H. and Dodgen H., Applications of radioactive chlorine to the study of the mechanisms of reactions involving changes in the oxidation state of chlorine, J. Amer. Chem. Soc., 1949, vol. 71, no. 10, p. 3330. https://doi.org/10.1021/ja01178a016

    Article  CAS  Google Scholar 

  46. Lenzi, F. and Rapson, W.H., Effets ioniques spécifiques sur le taux de formation du ClO2 par la réaction chlorure–chlorate, Canad. J. Chem., 1968, vol. 46, no. 6, p. 979. https://doi.org/10.1139/v68-160

    Article  CAS  Google Scholar 

  47. Schmitz, G., Kinetics and mechanism of the iodate–iodide reaction and other related reactions, Phys. Chem. Chem. Phys., 1999, vol. 1, no. 8, p. 1909. https://doi.org/10.1039/a809291e

    Article  CAS  Google Scholar 

  48. Vogt, H., Balej, J., Bennett, J.E., Wintzer, P., Sheikh, S.A., Gallone, P., Vasudevan, S., and Pelin, K., Chlorine Oxides and Chlorine Oxygen Acids, in Ullmann’s Encyclopedia of Industrial Chemistry, Ullmann, F., Ed., Berlin: Wiley Online Library, 2010, p. 622. https://doi.org/10.1002/14356007.a06_483.pub2

    Book  Google Scholar 

  49. Sant’Anna, R.T.P., Santos, C.M.P., Silva, G.P., Ferreira, R.J.R., Oliveira, A.P., Côrtes, C.E.S., and Faria, R.B., Kinetics and mechanism of chlorate-chloride reaction, J. Brazil. Chem. Soc., 2012, vol. 23, no. 8, p. 1543. https://doi.org/10.1590/S0103-50532012005000017

    Article  Google Scholar 

  50. Fleischmann, M., Lasserre, F., Robinson, J., and Swan, D., The application of microelectrodes to the study of homogeneous processes coupled to electrode reactions: Part I. EC0 and CE reactions, J. Electroanal. Chem., 1984, vol. 177, p. 97. https://doi.org/10.1016/0022-0728(84)80215-6

    Article  CAS  Google Scholar 

  51. Compton, R.G., Day, M.J., Laing, M.E., Northing, R.J., Penman, J.I., and Waller, A.M., Rotating-disc electrode voltammetry. The catalytic mechanism (EC') and its nuances, J. Chem. Soc., Faraday Trans. I, 1988, vol. 8, p. 2013. https://doi.org/10.1039/F19888402013

    Article  Google Scholar 

  52. Denuault, G., Fleischmann, M., Pletcher, D., and Tutty, O.R., Development of the theory for the interpretation of steady state limiting currents at a microelectrode: EC’ processes: first and second order reactions, J. Electroanal. Chem., 1990, vol. 280, p. 243. https://doi.org/10.1016/0022-0728(90)87001-Z

    Article  Google Scholar 

  53. Denuault, G. and Pletcher, D., Improvement to the equation for the steady state limiting currents at a microelectrode: EC' processes (1st and 2nd order reactions), J. Electroanal. Chem., 1991, vol. 305, no. 1, p. 131.

    Article  CAS  Google Scholar 

  54. Lavagnini, I., Pastore, P., and Magno, F., Digital simulation of steady state and non-steady state voltammetric responses for electrochemical reactions occurring at an inlaid microdisk electrode: Application to ECirr, EC' and CE first-order reactions, J. Electroanal. Chem., 1993, vol. 358, p. 193. https://doi.org/10.1016/0022-0728(93)80438-N

    Article  CAS  Google Scholar 

  55. Tutty, O.R., Second-order kinetics for steady state EC' reactions at a disc microelectrode, J. Electroanal. Chem., 1994, vol. 377, p. 39. https://doi.org/10.1016/0022-0728(94)03447-8

    Article  CAS  Google Scholar 

  56. Molina, A., Analytical solution corresponding to the i/t response to a multipotential step for a catalytic mechanism, J. Electroanal. Chem., 1998, vol. 443, no. 2, p. 163. https://doi.org/10.1016/S0022-0728(97)00566-4

    Article  CAS  Google Scholar 

  57. Molina, A., Serna, C., and Martinez-Ortiz, F., Square wave voltammetry for a pseudo-first-order catalytic process at spherical electrodes, J. Electroanal. Chem., 2000, vol. 486, no. 1, p. 9. https://doi.org/10.1016/S0022-0728(00)00115-7

    Article  CAS  Google Scholar 

  58. Mirceski, V. and Gulaboski, R., Surface catalytic mechanism in square-wave voltammetry, Electroanalysis, 2001, vol. 13, p. 1326. https://doi.org/10.1002/1521-4109(200111)13:16<1326::AID-ELAN1326>3.0.CO;2-S

    Article  CAS  Google Scholar 

  59. Mirceski, V. and Gulaboski, R., The surface catalytic mechanism: a comparative study with square-wave and staircase cyclic voltammetry, J. Solid State Electrochem., 2003, vol. 7, p. 157. https://doi.org/10.1007/s10008-002-0290-7

    Article  CAS  Google Scholar 

  60. Compton, R.G. and Banks, C.E., Understanding Voltammetry, London: Imperial College, 2011, 429 p.

    Book  Google Scholar 

  61. Molina, A., Gonzalez, J., Laborda, E., Wang, Y., and Compton, R.G., Analytical theory of the catalytic mechanism in square wave voltammetry at disc electrodes, Phys. Chem. Chem. Phys., 2011, vol. 13, p. 16748. https://doi.org/10.1039/C1CP22032B

    Article  CAS  PubMed  Google Scholar 

  62. Ward, K.R., Lawrence, N.S., Hartshorne, R.S., and Compton, R.G., Cyclic voltammetry of the EC' mechanism at hemispherical particles and their arrays: the split wave, J. Phys. Chem., 2011, vol. 115, no. 22, p. 11204. https://doi.org/10.1021/jp2023204

    Article  CAS  Google Scholar 

  63. Calhoun, R.L. and Bard, A.J., Study of the EC’ mechanism by scanning electrochemical microscopy (SECM), ECS Transactions, 2011, vol. 35, no. 29, p. 39. https://doi.org/10.1149/1.3645611

    Article  Google Scholar 

  64. Gulaboski, R. and Mihajlov, L., Catalytic mechanism in successive two-step protein-film voltammetry—Theoretical study in square-wave voltammetry, Biophys. Chem., 2011, vol. 155, no. 1, p. 1. https://doi.org/10.1016/j.bpc.2011.01.010

    Article  CAS  PubMed  Google Scholar 

  65. Gulaboski, R., Mirceski, V., Bogeski, I., and Hoth, M., Protein film voltammetry: electrochemical enzymatic spectroscopy: A review on recent progress, J. Solid State Electrochem., 2012, vol. 16, p. 2315. https://doi.org/10.1007/s10008-011-1397-5

    Article  CAS  Google Scholar 

  66. Yue, D., Jia, Y., Yao, Y., Sun, J., and Jing, Y., Structure and electrochemical behavior of ionic liquid analogue based on choline chloride and urea, Electrochim. Acta, 2012, vol. 65, p. 30. https://doi.org/10.1016/j.electacta.2012.01.003

    Article  CAS  Google Scholar 

  67. Gulaboski, R. and Mirceski, V., New aspects of the electrochemical-catalytic (EC') mechanism in square-wave voltammetry, Electrochim. Acta, 2015, vol. 167, p. 219. https://doi.org/10.1016/j.electacta.2015.03.175

    Article  CAS  Google Scholar 

  68. The Runge–Kutta_method. [Electronic Resource]. https://en.wikipedia.org/wiki/Runge–Kutta_methods.

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 20-63-46041.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Vorotyntsev or P. A. Zader.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorotyntsev, M.A., Zader, P.A. Simulation of Mediator-Catalysis Process inside Redox Flow Battery. Russ J Electrochem 58, 1041–1056 (2022). https://doi.org/10.1134/S1023193522110118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522110118

Keywords:

Navigation