Skip to main content
Log in

Protein film voltammetry: electrochemical enzymatic spectroscopy. A review on recent progress

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This review is focused on the basic principles, the main applications, and the theoretical models developed for various redox mechanisms in protein film voltammetry, with a special emphasis to square-wave voltammetry as a working technique. Special attention is paid to the thermodynamic and kinetic parameters of relevant enzymes studied in the last decade at various modified electrodes, and their use as a platform for the detection of reactive oxygen species is also discussed. A set of recurrent formulas for simulations of different redox mechanisms of lipophilic enzymes is supplied together with representative simulated voltammograms that illustrate the most relevant voltammetric features of proteins studied under conditions of square-wave voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Armstrong FA (2002) Voltammetry of proteins. In: Bard AJ, Stratmann M, Wilson GS (eds) Encyclopedia of electrochemistry, vol 9. Wiley VCH, Weinheim

    Google Scholar 

  2. Armstrong FA (2002) Voltammetric investigations of iron-sulfur clusters in proteins. In: Brajter-Toth A, Chambers JQ (eds) Electroanalytical methods for biological materials. Marcel Dekker, Basel

    Google Scholar 

  3. Armstrong FA (2002) J Chem Soc Dalton 5:661–671

    Article  Google Scholar 

  4. Armstrong FA (1997) Applications of voltammetric methods for probing the chemistry of redox proteins. In: Lenaz G, Milazzo G (eds) Bioelectrochemistry: principles and practice, vol. 5. Birkhauser Verlag AG, Basel

    Google Scholar 

  5. Barlett PN (2008) Bioelectrochemistry: fundamentals, experimental techniques and application. Wiley, Chichester

    Google Scholar 

  6. Jones AK, Lamle SE, Pershad HR, Vincent KA, Albracht SPJ, Armstrong FA (2003) Enzyme Electrokinetics: Electrochemical Studies of the Anaerobic Interconversions between Active and Inactive States of Allochromatium vinosum [NiFe]-hydrogenase. J Am Chem Soc 125:8505–8514

    Article  CAS  Google Scholar 

  7. Wijma HJ, Jeuken LJC, Verbeet MP, Armstrong FA, Canters GW (2007) Protein film voltammetry of copper-containing nitrite reductase reveals reversible inactivation. J Am Chem Soc 129:8557–8565

    Article  CAS  Google Scholar 

  8. Mirceski V, Komorsky-Lovric S, Lovric M (2008) In: Scholz F (ed) Square-wave voltammetry, theory and application. Springer, Berlin

    Google Scholar 

  9. Gulaboski R, Lovrić M, Mirčeski V, Bogeski I, Hoth M (2008) Protein-film voltammetry: A theoretical study of the temperature effect using square-wave voltammetry. Biophys Chem 137:49–55

    Article  CAS  Google Scholar 

  10. Hirst J (2006) Elucidating the mechanisms of coupled electron transfer and catalytic reactions by protein film voltammetry. Biochem Biophys Acta 1757:225–239

    Article  CAS  Google Scholar 

  11. Heering HA, Wiertz FGM, Dekker C, de Vries S (2004) Direct immobilization of native yeast iso-1 cytochrome c on bare gold: Fast electron relay to redox enzymes and zeptomole protein-film voltammetry. J Am Chem Soc 126:11103–11112

    Article  CAS  Google Scholar 

  12. Udit AK, Hindoyan N, Hill MG, Arnold FH, Gray HB (2005) Protein-surfactant film voltammetry of wild-type and mutant cytochrome P450 BM3. Inorg Chem 44:4109–4111

    Article  CAS  Google Scholar 

  13. Sultana N, Schenkman JB, Rusling JF (2005) Protein film electrochemistry of microsomes genetically enriched in human cytochrome P450 monooxygenases. J Am Chem Soc 127:13460–13461

    Article  CAS  Google Scholar 

  14. Léger C, Dementin S, Bertrand P, Rousset M, Guigliarelli B (2004) Inhibition and aerobic inactivation kinetics of Desulfovibrio fructosovorans NiFe hydrogenase studied by protein film voltammetry. J Am Chem Soc 126:12162–12172

    Article  Google Scholar 

  15. Gwyer JD, Richardson DJ, Butt JN (2006) Inhibiting Escherichia coli cytochrome c nitrite reductase: Voltammetry reveals an enzyme equipped for action despite the chemical challenges it may face in vivo. Biochem Soc Trans 34:133–135

    Article  CAS  Google Scholar 

  16. Lu H, Li Z, Hu N (2003) Direct voltammetry and electrocatalytic properties of catalase incorporated in polyacrylamide hydrogel films. Biophys Chem 104:623–632

    Article  CAS  Google Scholar 

  17. Shen L, Hu N (2004) Heme proteins with polyamidoamine dendrimer: Direct electrochemistry and electrocatalysis. Biochem Biophys Acta 1608:23–33

    Article  CAS  Google Scholar 

  18. Li M, He P, Zhang Y, Hu N (2005) An electrochemical investigation of hemoglobin and catalase incorporated in collagen films. Biochem Biophys Acta 1749:43–51

    CAS  Google Scholar 

  19. Sun W, Gao R, Jiao K (2007) Electrochemistry and electrocatalysis of hemoglobin in nafion/nano- CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode. J Phys Chem B 111:4560–4567

    Article  CAS  Google Scholar 

  20. Stutzmann M, Garrido JA, Eickhoff M, Brandt MS (2006) Direct biofunctionalization of semiconductors: A survey. Phys Stat A 203:3424–3437

    Article  CAS  Google Scholar 

  21. Härtl A, Schmich E, Garrido JA, Hernando J, Catharino SCR, Walter S, Feulner P, Kromka A, Steinmüller D, Stutzmann M (2004) Protein-modified nanocrystalline diamond thin films for biosensor applications. Nat Mater 3:736–742

    Article  Google Scholar 

  22. Barker CD, Reda T, Hirst J (2007) The flavoprotein subcomplex of complex I (NADH: ubiquinone oxidoreductase) from bovine heart mitochondria: Insights into the mechanisms of NADH oxidation and NAD+ reduction from protein film voltammetry. Biochem 46:3454–3464

    Article  CAS  Google Scholar 

  23. Gwyer JD, Richardson DJ, Butt JN (2004) Resolving complexity in the interactions of redox enzymes and their inhibitors: Contrasting mechanisms for the inhibition of a cytochrome c nitrite reductase revealed by protein film voltammetry. Biochem 43:15086–15094

    Article  CAS  Google Scholar 

  24. Munge B, Das SK, Ilagan R, Pendon Z, Yang J, Frank HA, Rusling JF (2003) Electron transfer reactions of redox cofactors in spinach Photosystem I reaction center protein in lipid films on electrodes. J Am Chem Soc 125:12457–12463

    Article  CAS  Google Scholar 

  25. Bernhardt PV, Santini JM (2006) Protein film voltammetry of arsenite oxidase from the chemolithioautotrophic arsenite-oxidizing bacterium NT-26. Biochem 45:2804–2809

    Article  CAS  Google Scholar 

  26. Fujita K, Nakamura N, Ohno H, Leigh BS, Niki K, Gray HB, Richards JH (2004) Mimicking protein-protein electron transfer: Voltammetry of Pseudomonas aeruginosa azurin and the Thermus thermophilus CuA domain at ω-derivatized self-assembled-monolayer gold electrodes. J Am Chem Soc 126:13954–13961

    Article  CAS  Google Scholar 

  27. Liu A, Wei M, Honma I, Zhou H (2005) Direct electrochemistry of myoglobin in titanate nanotubes film. Anal Chem 77:8068–8074

    Article  CAS  Google Scholar 

  28. Salimi A, Sharifi E, Noorbakhsh A, Soltanian S (2006) Direct voltammetry and electrocatalytic properties of hemoglobin immobilized on a glassy carbon electrode modified with nickel oxide nanoparticles. Electrochem Commun 8:1499–1508

    Article  CAS  Google Scholar 

  29. Aguey-Zinsou K-F, Bernhardt PV, Kappler U, McEwan AG (2003) Direct electrochemistry of a bacterial sulfite dehydrogenase. J Am Chem Soc 125:530–535

    Article  CAS  Google Scholar 

  30. Frangioni B, Arnoux P, Sabaty M, Pignol D, Bertrand P, Guigliarelli B, Léger C (2004) In Rhodobacter sphaeroides respiratory nitrate reductase, the kinetics of substrate binding favors intramolecular electron transfer. J Am Chem Soc 126:1328–1329

    Article  CAS  Google Scholar 

  31. Astuti Y, Topoglidis E, Briscoe PB, Fantuzzi A, Gilardi G, Durrant JR (2004) Proton-coupled electron transfer of flavodoxin immobilized on nanostructured tin dioxide electrodes: Thermodynamics versus kinetics control of protein redox function. J Am Chem Soc 126:8001–8009

    Article  CAS  Google Scholar 

  32. Xu Y, Peng W, Liu X, Li G (2004) A new film for the fabrication of an unmediated H2O2 biosensor. Biosens Bioelectron 20:533–537

    Article  CAS  Google Scholar 

  33. Udit AK, Hill MG, Gray HB (2006) Electrochemistry of cytochrome P450 BM3 in sodium dodecyl sulfate films. Langmuir 25:10854–10857

    Article  Google Scholar 

  34. Fleming BD, Tian Y, Bell SG, Wong L-L, Urlacher V, Hill HAO (2003) Redox properties of cytochrome P450 BM3 measured by direct methods. Eur J Biochem 270:4082–4088

    Article  CAS  Google Scholar 

  35. Udit AK, Hill MG, Bittner VG, Arnold FH, Gray HB (2004) Reduction of dioxygen catalyzed by pyrene-wired heme domain cytochrome P450 BM3 electrodes. J Am Chem Soc 126:10218–10219

    Article  CAS  Google Scholar 

  36. Zhao L, Liu H, Hu N (2006) Electroactive films of heme protein-coated multiwalled carbon nanotubes. J Coll Int Sci 296:204–211

    Article  CAS  Google Scholar 

  37. Vincent KA, Belsey NA, Lubitz W, Armstrong FA (2006) Rapid and reversible reactions of [NiFe]-hydrogenases with sulfide. J Am Chem Soc 128:7448–7449

    Article  CAS  Google Scholar 

  38. Cai C, Chen J, Lu T (2004) Direct electron transfer of glucose oxidase on the carbon nanotube electrode. Sci China, Ser B Chem 47:113–119

    Article  CAS  Google Scholar 

  39. Salimi A, Hallaj R, Soltanian S (2007) Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: Direct voltammetry and electrocatalytic activity. Biophys Chem 130:122–131

    Article  CAS  Google Scholar 

  40. Lu Q, Hu S (2006) Studies on direct electron transfer and biocatalytic properties od hemoglobin in polytetrafluoroethylene film. Chem Phys Lett 424:167–171

    Article  CAS  Google Scholar 

  41. Cai C, Chen J (2004) Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode. Anal Biochem 325:285–292

    Article  CAS  Google Scholar 

  42. Shumyantseva VV, Ivanov YD, Bistolas N, Scheller FW, Archakov AI, Wollenberger U (2004) Direct electron transfer of cytochrome P450 2B4 at electrodes modified with nonionic detergent and colloidal clay nanoparticles. Anal Chem 76:6046–6052

    Article  CAS  Google Scholar 

  43. Xie Y, Liu H, Hu N (2007) Layer-by-layer films of hemoglobin or myoglobin assembled with zeolite particles: Electrochemistry and electrocatalysis. Bioelectrochem 70:311–319

    Article  CAS  Google Scholar 

  44. Cao D, Hu N (2006) Direct electron transfer between hemoglobin and pyrolytic graphite electrodes. Biophys Chem 121:209–217

    Article  CAS  Google Scholar 

  45. Ye T, Kaur R, Wen X, Bren KL, Elliott SJ (2005) Redox properties of wild-type and heme-binding loop mutants of bacterial cytochromes C measured by direct electrochemistry. Inorg Chem 24:8999–9006

    Article  Google Scholar 

  46. Reeves JH, Song S, Bowden EF (1993) Application of square wave voltammetry to strongly adsorbed quasireversible redox molecules. Anal Chem 65:683–688

    Article  CAS  Google Scholar 

  47. Saccucci TM, Rusling JF (2001) Modeling square-wave voltammetry of thin protein films using Marcus theory. J Phys Chem B 105:6142–6147

    Article  CAS  Google Scholar 

  48. Zhang J, Si-X G, Bond AM, Honeychurch MJ, Oldham KB (2005) Novel kinetic and background current selectivity in the even harmonic components of fourier transformed square-wave voltammograms of surface-confined azurin. J Phys Chem B 109:8935–8947

    Article  CAS  Google Scholar 

  49. Jeuken LJC, Jones AK, Chapman SK, Cecchini G, Armstrong FA (2002) Electron-Transfer Mechanisms through Biological Redox Chains in Multicenter Enzymes. J Am Chem Soc 124:5702–5713

    Article  CAS  Google Scholar 

  50. Jeuken LJC, McEvoy JP, Armstrong FA (2002) Insights into Gated Electron-Transfer Kinetics at the Electrode-Protein Interface: A Square Wave Voltammetry Study of the Blue Copper Protein Azurin. J Phys Chem B 106:2304–2313

    Article  CAS  Google Scholar 

  51. Huang H, Hu N, Zeng Y, Zhou G (2002) Elecrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films. Anal Biochem 308:141–151

    Article  CAS  Google Scholar 

  52. Alcantara K, Munge B, Pendon Z, Frank HA, Rusling JF (2006) Thin film voltammetry of spinach photosystem II. Proton-gated electron transfer involving the Mn4 cluster. J Am Chem Soc 128:14930–14937

    Article  CAS  Google Scholar 

  53. Xu J, Lu Y, Liu B, Xu C, Kong J (2007) Sensitively probing the cofactor redox species and photo-induced electron transfer of wild-type and pheophytin-replaced photosynthetic proteins reconstituted in self-assembled monolayers. J Solid State Electrochem 11:1689–1695

    Article  CAS  Google Scholar 

  54. Ma L, Tian Y, Rong Z (2007) Direct electrochemistry of hemoglobin in the hyaluronic acid films. J Biochem Biophys Meth 70:657–662

    Article  CAS  Google Scholar 

  55. Zhou Y, Hu N, Zeng Y, Rusling JF (2002) Layer-by-layer assembly of ultrathin films of hemoglobin and clay nanoparticles with electrochemical and catalytic activity. Langmuir 18:8573–8579

    Article  CAS  Google Scholar 

  56. O’Dea JJ, Osteryoung JG (1993) Characterization of quasi-reversible surface processes by square-wave voltammetry. Anal Chem 65:3090–3097

    Article  Google Scholar 

  57. Komorsky-Lovrić S, Lovrić M (1995) Square-wave voltammetry of quasireversible surface redox reactions. J Electroanal Chem 384:115–122

    Article  Google Scholar 

  58. Lovrić M (1991) Modelling of surface electrochemical reactions. Elektrokhimija 27:186–195

    Google Scholar 

  59. Komorsky-Lovrić Š, Lovrić M (1995) Measurements of redox kinetics of adsorbed azobenzene by a “quasireversible maximum” in square-wave voltammetry. Electrochim Acta 40:1781–1784

    Article  Google Scholar 

  60. Komorsky-Lovrić Š, Lovrić M (1995) Kinetic measurements of a surface confined redox reaction. Anal Chim Acta 305:248–255

    Article  Google Scholar 

  61. Mirčeski V, Lovrić M, Jordanoski V (1999) Redox kinetic measurements of probucole using square-wave voltammetry. Electroanal 11:660–663

    Google Scholar 

  62. Mirčeski V, Lovrić M, Gulaboski R (2001) Theoretical and experimental study of the surface redox reaction involving interactions between the adsorbed particles under conditions of square-wave voltammetry. J Electroanal Chem 515:91–100

    Article  Google Scholar 

  63. Gulaboski R, Mirčeski V, Lovrić M, Bogeski I (2005) Theoretical study of a surface electrode reaction preceded by a homogeneous chemical reaction under conditions of square-wave voltammetry. Electrochem Commun 7:515–522

    Article  CAS  Google Scholar 

  64. Mirčeski V, Lovrić M (2000) Adsorption effects in square-wave voltammetry of an EC mechanism. Croat Chem Acta 73:305–329

    Google Scholar 

  65. Mirčeski V, Gulaboski R (2001) Surface catalytic mechanism in square-wave voltammetry. Electroanalysis 13:1326–1334

    Article  Google Scholar 

  66. Mirčeski V, Gulaboski R (2003) The surface catalytic mechanism: A comparative study with square-wave and staircase cyclic voltammetry. J Solid State Electrochem 7:157–165

    Google Scholar 

  67. O’Dea JJ, Osteryoung JG (1997) Square-wave voltammetry for two-step surface redox reactions. Anal Chem 69:650–658

    Article  Google Scholar 

  68. Mirčeski V, Gulaboski R (2003) A theoretical and experimental study of a two-step quasireversible surface redox reaction by square-wave voltammetry. Croat Chem Acta 76:37–48

    Google Scholar 

  69. Gulaboski R (2009) Surface ECE mechanism in protein film voltammetry-a theoretical study under conditions of square-wave voltammetry. J Solid State Electrochem 13:1015–1024

    Article  CAS  Google Scholar 

  70. Mirceski V, Lovric M (1997) Split square-wave voltammograms of surface redox reactions. Electroanal 9:1283–1287

    Article  CAS  Google Scholar 

  71. Halliwell B, Gutteridge JM (2001) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New York

    Google Scholar 

  72. Bard AJ (2008) Toward single enzyme molecule electrochemistry. ACS Nano 2:2437–2440

    Article  CAS  Google Scholar 

  73. Amemiya S, Bard AJ, Fan F-RF, Mirkin MV, Unwin PR (2008) Scanning electrochemical microscopy. Ann Rev Anal Chem 1:95–131

    Article  CAS  Google Scholar 

  74. McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chem Rev 106:4455–4483

    Article  CAS  Google Scholar 

  75. Aguey-Zinsou KF, Bernhardt PV, Leimkuehler S (2003) Protein Film Voltammetry of Rhodobacter Capsulatus Xanthine Dehydrogenase. J Am Chem Soc 125:15352–15358

    Article  CAS  Google Scholar 

  76. Gulaboski R, Mihajlov L (2011) Catalytic mechanism in successive two-step protein-film voltammetry. Theoretical study in square-wave voltammetry. Biophys Chem 155:1–9

    Article  CAS  Google Scholar 

  77. Nicholson RS (1968) A method based on polynomial approximations for numerical solution of volterra integral equations. J Electroanal Chem 16:145–151

    Article  Google Scholar 

Download references

Acknowledgments

R.G. thanks the Alexander von Humboldt Foundation for providing a Return postdoctoral fellowship. This work is also supported by the Alexander von Humboldt Foundation via the joint German–Macedonian project from the Research Group Linkage Programme 3.4-Fokoop-DEU/1128670 (to V.M., R.G. I.B., and M.H.). M.H. also acknowledges the support by the Deutsche Forschungsgemeinschaft (SFB 530, SFB 894, GK 845, GK 1326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubin Gulaboski.

Additional information

Dedicated to the 75th birthday of Dr. Nina Fjodorovna Zakharchuk

Appendix

Appendix

The recurrent formulas given in the following table are derived with the aid of the step-function method for solving integral equations [77], assuming that electrode reactions obey Butler–Volmer kinetic formalism. An oxidative electrode reaction is assumed, in which at the beginning of the experiment (i.e., t = 0) only the reduced form (R) of the protein is present in a form of a monolayer at surface concentration Γ*. For numerical integration, both time and current are incremented, with the serial number of the increments designated with m. The time increment is defined as d = 1/50f, which means that the duration of each potential pulse is divided into 25 time increments. The results are presented in the form of dimensionless current \( \Psi = \frac{I}{{nFA{\Gamma^{ * }}f}} \), where n is the number of electrons, F is the Faraday constant, A is the electrode surface area, and f is the frequency of the potential modulation. The dimensionless current is the function of the dimensionless relative electrode potential \( \phi = \frac{{nF}}{{RT}}\left( {E - {E^{{\not{ \circ }}}}} \right) \), anodic electron transfer coefficient α a, and specific critical kinetic parameters. Here, E is the electrode potential, \( {E^{{\not{ \circ }}}} \) is the formal potential of the electrode reaction, R is the gas constant, and T is the thermodynamic temperature. The meaning of the kinetic parameters is explained below Table 2.

Table 2 Recurrent formula for calculating the square-wave voltammograms of various surface electrode mechanisms relevant for adsorbed proteins under conditions of square-wave voltammetry

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulaboski, R., Mirčeski, V., Bogeski, I. et al. Protein film voltammetry: electrochemical enzymatic spectroscopy. A review on recent progress. J Solid State Electrochem 16, 2315–2328 (2012). https://doi.org/10.1007/s10008-011-1397-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1397-5

Keywords

Navigation